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Abstract. A transformation of structures τ is monadic second-order
compatible (MS-compatible) if every monadic second-order property P
can be effectively rewritten into a monadic second-order property Q such
that, for every structure S, if T is the transformed structure τ(S), then
P (T ) holds iff Q(S) holds.

We will review Monadic Second-order definable transductions (MS -trans-
ductions) : they are MS-compatible transformations of a particular form,
i.e., defined by monadic second-order (MS) formulas.

The unfolding of a directed graph into a tree is an MS-compatible trans-
formation that is not an MS- transduction.

The MS-compatibility of various transformations of semantical interest
follows. We will present three main cases and discuss applications and
open problems.

Overview of the lecture

Our working logical language is Monadic Second-Order Logic, i.e., the extension
of First-Order Logic with variables denoting sets of elements of the considered
structures. It enjoys a number of interesting properties regarding decidability
and construction of polynomial algorithms [4].

We consider certain semantical evaluations that can be formalized as trans-
formations of discrete structures like graphs or trees (and not as mappings from
terms to values belonging to semantical domains as this is usual in denotational
semantics).

Our main concern will be to identify transformations such that the verifica-
tion of an MS property P, of a structure T = τ(S) reduces to the verification
of an MS property Q of the input structure S, where Q depends only on τ and
P and, of course, of the fixed relational signatures of S and T .
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In such a case, if the MS theory of an infinite structure S is decidable (which
means that there exists an algorithm that decides whether a monadic second-
order formula is true or not in S), then so is that of T = τ(S). We say that τ
is Monadic Second-order compatible (MS-compatible).

Monadic Second-order definable transductions (MS-transductions in short)
have been surveyed in [2]. The idea is that T = τ(S) if T is defined by MS
formulas inside the strucure formed of k disjoint copies of S (where k and these
MS formulas are fixed and constitute the logical specification of τ). That an MS-
transduction is MS-compatible is pretty clear for those familiar with the notion
of interpretation in model theory.

An obvious consequence of the definition is that the size of the domain of
T = τ(S) is at most k times the size of that of S. In particular the unfolding
operation which transforms a finite graph into an infinite tree is not an MS-
transduction. However, the unfolding operation is MS-compatible [3,6].

Let us consider some examples and their semantical motivations.

Example1:
The structure S is a finite or infinite transition system, i.e., a directed labelled

graph, given with a special vertex called the initial state. The unfolding of S from
the initial state is a tree (usually infinite), the tree of finite paths starting from
the initial state, that represents the behaviour of the transition system.

Example 2:
S is here a finite or infinite directed acyclic graph representing a finite or

infinite term with shared subterms. Labels attached to vertices and edges make
unambigous the description of such a term by a graph. Unsharing, the operation
that reconstructs the term, is a special case of unfolding.

As an example of such a graph, we can take f ⇒ f ⇒ f ⇒ a with f a binary
function symbol and a a constant.

It unshares into the term f(f(f(a, a), f(a, a)), f(f(a, a), f(a, a))).
By looking at sizes, one can see that unsharing is not an MS-transduction.

Example 3:
S is here a recursive applicative program scheme, as those considered in [1],

and T is the infinite term called an algebraic tree. It is the infinite term result-
ing from a certain form of unfolding, involving term substitutions. Here is an
example, consisting of a single equation:

ϕ(x) = f(x, ϕ(g(x))
This scheme unfolds into the algebraic tree:
f(x, f(g(x), f(g(g(x)), f(g(g(g(x))), ...)))).
The scheme is actually not given by a graph, but a graph representation

fitting our formal framework is easy to build. The transformation from graphs
representing schemes (consisting of several mutually recursive equations) with
function symbols of bounded arity to algebraic trees is MS-compatible. It follows
in particular that the MS theory of an algebraic tree is decidable [3,5].

Example 4:



Hyperalgebraic trees are defined as algebraic trees except that the ”unknown
functions” in schemes may take parameters of function type. Such schemes have
been first investigated by W. Damm [7] and more recently by Knapik et al. [8,9].

Example 5:
We introduce new symbols to represent first-order substitutions. It is proved

in [5] that the mapping from terms to terms that evaluates substitutions, i.e.,
that eliminates substitution symbols is MS-compatible.

Here is an example. Subx,y denotes the ternary function such that Subx,y(t, t1,
t2) evaluates into the term t[t1/x, t2/y], i.e., the result of the simultaneous sub-
stitution of t1 for x and t2 for y in t.

For instance, the term
Subx,y( Subx,u(f(x, x, x, u), a, y), b, c)
evaluates to Subx,y(f(a, a, a, y), b, c) and then to f(a, a, a, c). (Note that b

disappears because the variable x has no occurrence in the term f(a, a, a, c).

A central result is the MS-compatibility of the unfolding mentioned in Exam-
ples 1 and 2. The case of Example 5 is proved in [5] and the results of Examples
3 and 4 follow.

Actually, the main result behind all this is the MS-compatibility of a trans-
formation of structures defined by Muchnik (improving a definition by Shelah
and Stupp), which builds a kind of tree Tree(S) over any structure S. (If S is
a set of two elements, then Tree(S) is the infinite complete binary tree). This
result is proved in [10]. It subsumes the case of unfolding and we think it may
help to solve some open questions in [8,9].

We will discuss applications and open problems related to Example 5.
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