
Semantical evaluations

as monadic second-order compatible

structure transformations

Bruno Courcelle

Université Bordeaux 1, LaBRI

(based in part on joint work with T. Knapik,
Université de La Réunion, France)

Summary

1.Introduction : MS (Monadic Second-Order) logic

and semantics

2. MS logic and MS transductions

3. MS compatible structure transformations

4. First-order substitution as a basic operation

5. Hyperalgebraic trees and recursive program schemes

1. Why MS (Monadic Second-Order) logic

is interesting ?

It expresses significant graph properties,

graph optimization functions, and graph transformations.

Results : 1. Graph properties and functions expressed in MS logic

are evaluable in linear time on classes of graphs having a certain

hierarchical structure (bounded tree-width or clique-width).

2. Satisfiability of MS properties on infinite equational graphs

or, on infinite sets of finite graphs described by context-free graph

grammars is decidable.

3. MS transductions applied to sets of finite graphs preserves

context-free-ness (special case: intersection with an MS definable set)

4. Strong analogy with rational languages, rational transductions

and context-free languages : the context-free sets of graphs are

the images of the set of finite binary trees under MS transductions.

5. MS logic subsumes several languages used for semantics of

programs like µ-calculus or CTL .

Semantics

1. Semantics is a mapping from :

syntactical objects to values in semantical domains.

2. Syntactical objects are usually finite terms over finite

signatures.

3. Semantical domains : sets of partial functions over sets,

real numbers approximated by intervals,

complete partial orders, complete lattices, etc…

Here: syntactical and semantical objects will be

considered as finite or infinite discrete logical

structures.

Example : Recursive applicative program schemes

Syntax : finite systems of mutually recursive equations like

ϕ(x,y) = f(x, g(y, ψ(x, h(y))))

ψ(x, y) = k(x, ϕ (h(x), h(y)))

Semantical domain : Continous functions of appropriate types over

complete partial orders.

By unfolding the recursion, one gets a pair of infinite trees

(one for ϕ, one for ψ) that represents faithfully all possible

computations in all possible domains.

 f

 x g

 y k

 x f

 h g

 x h …

 h …

 y

 The tree for ϕ(x,y).

This pair of infinite trees can be considered as the

semantical value.

The semantic mapping goes from :

(Finite) Systems of equations to tuples of infinite trees.

Both objects are representable by logical structures.

Semantical mapping :

Program Scheme Continous Functions on cpo’s

 Formal Canonical

 Evaluation homomorphism
 Infinite trees

The core of the semantical mapping is the Formal

Evaluation step : unfolding and term substitutions

Semantics as a transformation of

discrete (logical) structures.

Examples : 1) Unsharing a directed acyclic graph into a
term :

 F F

 G G G

 H H H H H

 A A A A AA A A A

2) Unfolding a directed graph S (a transition system) into

an infinite tree Unf(S). *
 a b
Fact: Unf(S) is regular if S is finite. * * c
 * b
 ∗ a
 a b c * *
 c
 * d * * a * b
 *
 ….

3) Unfolding a recursive applicative program scheme P

into a tuple of algebraic trees

Fact: Algebraic trees are not regular in general.

 ϕ(x) = f(x, ϕ(g(x))) f

 x f

 g f

 x g f

 g g f

 x g ……….

4) Hyperalgebraic trees : as in 3) with function variables

as parameters.

Thm (W. Damm) : There is a strict hierartchy :

Regular trees ⊂ Algebraic trees ⊂ level n -Hyperalgebraic

H(ϕ, x, y) = f(x, ϕ(H(ϕ ° ϕ , g(x), f(x, y)))

 x ,y : b , g , ϕ : b → b ,
 f : b X b → b , H : (b → b) X b X b → b

5) Evaluation of first-order substitution handled as a basic

operation.

It is mapping from (finite) terms to (finite) terms.

subx,y (s , t , t’) evaluates to s [t / x, t’ / y]

 subx,y is a new symbol, … [… / x, … / y] is an operation in

metalanguage.

Example : Elimination of Substitution symbols

subx,y (f(x, y, z), g(x,y), subz (f (z,z,x) , h(u)))

= subx,y (f(x, y, z), g(x,y), f(h(u), h(u), x))

= f(g(x,y), f(h(u), h(u),x), z)

Question : Has MS logic anything to say about

these semantical evaluations ?

Relevant monadic second-order properties of trees

representing the behaviour of recursive program

schemes

f

 x y

Does argument x (or y) occur anywhere below an

occurrence of f ? (Tool for strictness analysis).

Has symbol f infinitely many occurrences in the tree ?

2. MS logic and MS transductions.

Logical expression of graph properties

Graphs are simple, directed, finite. (Extension is easy to undirected

graphs, to hypergraphs, and to relational structures)

G = < V, edg(.,.) > Vertices, edge relation

ϕ logical formula

G = ϕ is a property of G

G = ϕ (x,y) is a property of a pair (x,y) of vertices of G

Example 1 : the first-order formula

∀ u,x,y,z (edg(x,u) & edg (y,u) & edg(z,u)

 ⇒ x = y v y = z v x = z)

 y
expresses that G has indegree ≤ 2 x u

 z

Example 2: the monadic 2nd-order formula

∃ X,Y (¬ ∃ x (x ∈ X & x ∈ Y)

& ∀ x,y [edg(x,y) ⇒ ¬ (x ∈ X & y ∈ X)
 & ¬ (x ∈ Y & y ∈ Y)
 & (x ∈ X v x ∈ Y v y ∈ X v y ∈ Y)])

expresses 3-vertex colorability (color classes are X, Y, V(G) - (X ∪ Y))

Example 3 (important): the MS formula ϕ(x,y)

∃ X (x ∈ X & ¬ (y ∈ X)
 & ∀ u,w (u ∈ X & edg(u, w) ⇒ w ∈ X))

expresses that there is no directed path from x to y.

Example 4: The 2nd-order (non MS) formula

∃ R ("R is a non-identity bijection on vertices" &

∀ u,w,u',w'[R(u,u') & R(w,w') ⇒
 (edg (u,w) ⇔ edg(u',w')])

expresses the existence of a nontrivial auto-morphism.

Main examples of graph properties

First-order expressible:

 degree at most (fixed) d

 forbidden (fixed) subgraph

 local properties (thm. by Gaifman):

boolean combinations of properties of the
 form "there are m disjoint 'balls'
 of radius r satisfying a certain
 first-order property"

Monadic Second-Order expressible properties

 k - vertex colorability (fixed k ; NP-complete if 3 ≤ k)

 transitive closures, "path" properties
 like connectivity, cycles, trees

 forbidden "minors" (Kuratowski Theorem)
 whence planarity, genus at most fixed g

Properties of processes

Processes = Transition Systems

 = Directed Labelled Graphs

Hierarchy of languages

On graphs:

CTL ⊂ CTL* ⊂ µ-Calculus ⊂ MS-Logic

 = Bisimulation-invariant
 MS properties

On binary trees:

 CTL ⊂ CTL* ⊂ µ -Calculus = MS-Logic

MSL: ∀ X , ∃ Y

M-Calculus: x ∈ µZ νT

CTL* : On some infinite path some property

holds infinitely often

MS-transductions

Definition of an MS-transduction (sometimes called an

interpretation):

 A transformation τ of structures, defined as follows:

 S  T = τ (S)

 where T is defined inside the structure:

 S ⊕ S ⊕ ... ⊕ S

 (fixed number of disjoint copies of S)

by MS formulas.

Example of an MS-transduction

The square mapping δ on words: u → uu

 We let u = aac

 S • → • → •
 a a c

 S ⊕ S • → • → • • → • → •

 a a c a a c
 p1 p1 p1 p2 p2 p2

 δ(S) • → • → • → • → • → •
 a a c a a c

 In δ(S) we redefine Suc as follows :
Suc(x,y) : ⇔ p1(x) & p1(y) & Suc(x,y)
 v p2(x) & p2(y) & Suc(x,y)
 v p1(x) & p2(y) & "x has no successor"

& "y has no predecessor"

 We also remove the "marker" predicates p1, p2.

Context-Free Graph Grammars

For words the set of context-free rules:

 S → a S T S → b

 T → c T T T T → a

is equivalent to the system of set equations:

 S = a S T ∪ { b }

 T = c T T T ∪ { a }

where S is the language generated by S (idem for T and T).

For graphs we consider similarily systems of equations like:

 S = f(k(S), T) ∪ { b }

 T = f(T , f(g(T), m(T))) ∪ { a }

where f is a binary operation, g, k, m are unary operations on
graphs, a, b are basic graphs.

 There are two sets of graph operations, related to tree-width and
to clique-width, hence we have two classes of context-free sets of
graphs, called for historical reasons: HR-context-free (for Hyperedge-
Replacement) and VR-context-free (for Vertex-Replacement).

Trees, MS-Transductions and
Context-free graph grammars

For words:
 Rational
 Dyck transductions Context-free
 Language Languages
 (([()][((()))]))

For graphs:

 Finite MS- transductions VR-Context-
 Binary free sets
 Trees of graphs

 MS-transductions

 to incidence graphs

 HR-Context-free

sets of graphs

 Fact: Rational and MS-transductions are closed under
 composition.

MS-compatible graph transformations.

Definition : Transformations of relational structures S
(or of graphs represented by structures):

 S  τ (S)

 τ #(ψ)  ψ

such that every MS formula ψ has an effectively computable
backwards translation τ #(ψ) , an MS formula, such that :

S = τ #(ψ) iff τ (S) = ψ

 The verification of ψ in the object structure τ (S) reduces
to the verification of τ #(ψ) in the given structure S.
 Informally S describes τ (S) and the MS properties of τ (S) are
described by MS properties of S.

Consequence: If a set of structures L has a decidable MS
satisfiability problem, then so has τ (L).

Proposition: Every MS-transduction is MS-compatible.

Fact : The semantical mappings of the examples 1 to 5 are

MS-compatible but are not MS-transductions

Theorem (Courcelle, Walukiewicz) : The unfolding mapping

from directed graphs to trees is MS compatible.

Consequences:

1. The MS properties of the behaviour of a "program" M

(dynamic properties of M) can be expressed by MS formulas

in M itself (as MS static properties of M).

(The translation mapping is the same for all "programs" or "transition
systems", i.e., all graphs with same set of edge labels.)

2. The MS satisfiability problem (equiv. the MS theory) of each
regular tree is decidable (known from Rabin, 1969) and
moreover, reduces to that of the finite graphs of which they
are unfoldings.

The recursive mapping : G Unf(G) ThMS(Unf(G))

 factors as : ThMS(G)

Example showing that this is not a trivial fact.

Consider the ‘shuffle’ mapping ϖ : a*b* {a,b}* defined as :
ϖ(an,bm) = (ab) nb(m - n) if n ≤ m
ϖ(an,bm) = (ab) na(n - m) if n > m.

Each output word has a decidable MS-satisfiability problem
(trivially since each output word is finite).

However, ϖ is not MS compatible, otherwise the langage anbn
would be regular. (Classical argument).

Hence, the MS theory of each word ϖ (w) is decidable but in a
way that is not uniform in terms of w, considered as a description of
ϖ(w).

Observations:

1.The monadic second-order theory of a regular tree is

decidable.

2. The (unfolding) mapping from:

 Finite Regular Regular trees
 Systems

 is MS-compatible.

Hence: 2 ⇒ 1.

But 2 is much richer. See example of ϖ.

3. MS compatible structure transformations

MS compatible transformations of structures :

1. Each MS-transduction

2. The composition of two MS compatible

 transformations (clear from the definition)

3. Unfolding

4.The Shelah-Stupp-Muchnik tree expansion (proved

by Walukiewicz).

The Shelah-Stupp-Muchnik Construction

 Structure  Structure
 M Tree(M)

 M = <V, edg(.,.)>

 Tree(M) = <Seq(V), edgSeq(.,.),son(.,.),clone(.)>

 Seq(V) = nonempty sequences over V,

 edgSeq = { (wx,wy) / w ∈ V*,(x,y) 2 edg}
 son = { (w,wx) / w ∈ Seq(V), x 2 V},
 clone = { wxx / w ∈ V* , x ∈ V},
 (clone = copy of its father).

Theorem (Walukiewicz): The mapping M  Tree(M)

is MS-compatible.

Observation: For a graph G, the tree Unf(G) is MS- definable inside
Tree(G) (whence, definable from Tree(G) by an MS-transduction).

Consequence: The mapping Unf is MS-compatible, as composition of
two MS-compatible mappings.
Actually the case of unfolding (provable without this difficult theorem) would

suffice for the evaluation of first-order substitutions from which follow the cases of

algebraic and hyperalgebraic trees.

Conjecture (Seese): If a set of (finite) graphs L

has a decidable MS theory, then it is of the form:

L = τ(T) for T a set of finite trees,

τ an MS transduction.

About the structure of sets of graphs having a

 decidable MS theory.

Related question: What is the structure of MS-

compatible graph transformations ?

The best we know are transformations of the form:

τ = α o Tree o β o Tree o γ o..... o Tree o ω

where Tree is the Shelah-et al. construction and α,

 β ,..., ω are MS transductions. What else ?

4. First-Order substitution as a basic operation

 F: function symbols

 X: finite set of first-order variables

 Tω(F,X) = finite and infinite terms
 (viz. trees) over F and X.

 New operation:

 for w a sequence of n pairwise distinct variables in X,

 subw(s, t1, ..., tn) denotes
 the result of the substitution in
 s of ti for each occurrence of
 the i-th variable of w.

 SubX is the (finite) set of all operations subw.

We let Eval:

Tω(F U SubX ,X) Tω(F,X)

be the mapping that evaluates the substitution operations

hence eliminates the substitution symbols.

Example: (A, B, C are any finite or infinite terms)

Eval[subx,y,z(f(f(x,y),g(x,u)),A,B,C)] = f(f(A,B),g(A,u))

Theorem (B.C.,T.Knapik): The mapping Eval is MS-compatible.

Proof sketch:

The mapping Eval is the composition

of three MS-compatible mappings:

1) An MS-transduction from terms to directed
 acyclic graphs,

2) the unfolding Unf,

3) the simultaneous contraction of all ε-labelled
 edges, also an MS-transduction.

 t (∈ Tω(F∪ SubX,X))) Eval(t) (∈ Tω(F, X))
 α Contraction of ε-edges

 Infinite d.a.g. Unf Infinite tree
 (sharing) with
 with ε-edges ε-edges

Algebraic trees as Eval(Regular Trees)

A regular tree (term) t over F is defined by a finite system
like:

 t = f(t, g(t, s))
 s = g(a, f(s,t))

Theorem (Rabin, 1969): MS properties of regular trees are
decidable.

 An algebraic tree (term) over F ∪ X can be defined by a
recursive applicative program scheme like :

 θ(x,y) = f(x, y, θ(x,g(y)))

or by equation (*) over F ∪ SubX (where substitution
operations are evaluated) :

 t = f(x,y, subx,y(t, x, g(y))) (*)

 Note that t is in argument position. Hence,
equation (*) defines a regular tree T over F ∪ SubX
and t = Eval(T).

Theorem:1. Alg(F,X) = Eval(Reg(F ∪ SubX ,X))

2.The MS properties of algebraic trees are

decidable.

3. The semantical mapping from :

 Systems(F,X) to Alg(F,X)

is MS compatible.

Remark : Systems(F,X) is the set of (finite) systems of

algebraic equations written over the finite sets F and X

with unbounded number of ‘unknown’ functions of

maximal arity Card(X)

5. Hyperalgebraic trees

 We can define a hierarchy of sets of infinite trees:

 Alg0(F,X) = Reg(F,X),

 Alg1(F,X) = Eval(Reg(F∪ SubY,Y)) ∩ Tω(F,X),
 ...
 Algn+1(F,X) =
 Eval(Algn(F∪ SubY,Y)) ∩ Tω(F,X),.

Theorem: 1. The MS properties of hyperalgebraic

 trees are decidable.

2. The mapping from systems to theories of the

corresponding trees is recursive.

Question : Which types of program scheme do these

 infinite hyperalgebraic trees represent?

Lambda schemes

Example :

 x,y,u,v,k : b , ϕ,ψ,g,h : b → b
 f : b X b → b H : (b → b) X (b → b) X b X b → b

H(ϕ,ψ,x,y) = f [x,
 ϕ(H(λu.ϕ(ψ(u)),
 λv.f(ϕ(v),ψ(h(v))),
 g(y),
 ϕ(k)))]

 We let K(ϕ,ψ) = λx,y.H(ϕ,ψ,x,y)

of type : (b → b) X (b → b) → (b X b → b)
 K is definable recursively by:

K(ϕ,ψ) = comp2(f,
 π1,
 comp1(ϕ,
 comp2(K[comp1(ϕ,ψ),

 comp2(f, ϕ,comp1(ψ,h))],
 comp1(g,π2),

 comp1(ϕ,k2))))
 where:

comp2(ϕ,ψ,κ) defined as λw. ϕ(ψ(w) , κ(w))

corresponds to subx,y(.,.,.) and

comp1(ϕ,ψ) = λw. ϕ(ψ(w)) corresponds to subx(.,.)

 πi is the i-th projection : b X b → b,

k2 is the constant mapping = k, with 2 arguments.

 Hence K defines an algebraic tree T over comp2,

comp1, the nullary symbols f, g, h, π1 , π2 , k2

and H defines an infinite tree t = Eval(T).

Hence t is in Alg2.

A more difficult case:

 H(ϕ, x) = f(x, ϕ(H(λu.f(ϕ(u), x), x)))

It defines actually an algebraic tree.

Question: Does every lambda-scheme define a
hyperalgebraic tree?

An open question:

For a Noetherian and confluent term rewriting

system, the normal form mapping goes from

finite terms to finite terms .

When is it an MS-transduction ?

When is it MS-compatible?

