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1.    Why MS (Monadic Second-Order) logic  
 
is interesting ? 
 

It expresses significant graph properties,  
 

graph optimization functions, and graph transformations. 
 

Results :   1. Graph properties and functions expressed in MS logic  
 
are evaluable in linear time on classes of graphs having a certain  
 
hierarchical structure (bounded tree-width  or  clique-width). 
 
 
2. Satisfiability of MS properties on infinite equational graphs  
 
or, on infinite sets of finite graphs described by context-free graph  
 
grammars is decidable. 
 
 
3. MS transductions applied to sets of finite graphs preserves  
 
context-free-ness (special case: intersection with an MS definable set) 
 
 
4. Strong analogy with rational languages, rational transductions  
 
and context-free languages : the context-free sets of graphs are 
 
the images of the set of finite binary trees under MS transductions. 
 
 
5. MS logic subsumes several languages used for semantics of  
 
programs like µ-calculus  or  CTL . 



 
Semantics 
 
 
1. Semantics is a mapping from : 
 

syntactical objects to values in semantical domains. 
 

 
2. Syntactical objects are usually finite terms over finite  
 
signatures. 
 
 
3. Semantical domains :    sets of partial functions over sets,  
 
real numbers approximated by intervals,  
 
complete partial orders, complete lattices, etc… 
 
 
 
Here:    syntactical and semantical objects will be  
 
considered  as finite or infinite discrete logical  
 
structures. 
 



 

Example :  Recursive applicative program schemes  
 

Syntax : finite systems of mutually recursive equations like  
 

ϕ(x,y) = f(x, g(y, ψ(x, h(y)))) 

ψ(x, y) = k(x, ϕ (h(x), h(y))) 
 

Semantical domain : Continous functions of appropriate types over  
 

complete partial orders. 
 
 

By unfolding the recursion, one gets a pair of infinite trees  
 

(one for ϕ, one for ψ ) that represents faithfully all possible  
 

computations in all possible domains. 
 
                                        f 
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      The tree  for  ϕ(x,y). 



 
This pair of infinite trees can be considered as  the  
 

semantical value. 
 
 

The semantic mapping goes from : 
 

(Finite) Systems of equations   to  tuples of infinite trees. 
 

Both objects are representable by logical structures. 
 
 
 
 
Semantical mapping : 
 

 
Program Scheme                 Continous Functions on cpo’s 

 
                 Formal                                     Canonical 

                       Evaluation                                homomorphism 
   Infinite trees 
 
 

 
 
 
 
 

The core of the semantical mapping is  the  Formal  
 
Evaluation  step : unfolding  and  term  substitutions 



 

Semantics as a transformation of 
 

discrete (logical) structures. 
 
 
 
Examples :      1)    Unsharing a directed acyclic graph into a 
term : 
 
 
      F        F 
 
      
        G           G     G 
 
 
        

       H          H       H    H     H  
 
 
   
        A                   A        A     A  AA    A    A      A    
  
 
2) Unfolding a directed graph S (a transition system) into  
 
an infinite tree Unf(S).                                   * 
                                                                        a             b 
Fact:   Unf(S) is regular  if S is finite.              *               *   c 
                                                                                               *   b 
   ∗                                                                a                   
            a    b      c                                                                              *                           * 
                                                                                                            c 
   *    d   *           *                                                                                     a          *   b 
                                                                                                       *   
                                                                                                             ….



 
3) Unfolding a recursive applicative program scheme  P  
 
into a tuple of algebraic trees 
 
Fact:  Algebraic trees are not regular in general. 
 

  ϕ(x) = f( x, ϕ(g(x)) )                                         f 
 
                                                                    x             f 
 
                                                                            g           f 
 
                                                                       x            g      f 
 
                                                                                 g      g       f   
 
                                                                              x        g   ………. 
 
 
4) Hyperalgebraic trees : as in 3) with function variables  
 
as parameters. 
 
 
Thm (W. Damm) :  There is a strict hierartchy : 
 

Regular trees   ⊂     Algebraic trees   ⊂  level n -Hyperalgebraic  
 
 
 

H(ϕ, x, y) = f( x, ϕ( H(ϕ ° ϕ , g(x), f(x, y) ) ) 
              

             x ,y :   b ,                      g , ϕ :   b → b , 
             f   :  b X b → b  ,       H :    (b → b) X b X b → b



5) Evaluation of first-order substitution handled as a basic  
 
operation.  
 

It is  mapping from (finite) terms to (finite) terms. 
 
 

subx,y  (s , t , t’ )  evaluates  to    s [t / x, t’ / y]  
 
 subx,y    is a new symbol, … [… / x, … / y]  is an operation in  
 
metalanguage. 
 
 
 
Example : Elimination of  Substitution  symbols 
 

subx,y  (f(x, y, z), g(x,y),   subz  (f (z,z,x) , h(u)) )  
 

=  subx,y  (f(x, y, z),   g(x,y),   f(h(u), h(u), x) ) 
 

=  f(g(x,y), f(h(u), h(u),x), z) 
 
 
 
 

 
Question : Has MS logic anything to say about  
 

these semantical evaluations ? 



Relevant  monadic second-order properties  of  trees   
 
representing  the behaviour   of  recursive  program   
 
schemes  
 
 
 
 
 
 

f 
 
 
 
 
 
 
                                             x              y 
 
 
Does  argument  x  (or  y )  occur  anywhere  below an  
 
occurrence of  f ?   (Tool  for strictness  analysis). 
 
 
Has symbol  f  infinitely  many  occurrences  in  the tree ?  



 
2.      MS logic and MS transductions. 
 
 

Logical  expression  of  graph  properties 
 
Graphs  are  simple, directed, finite.  (Extension is easy to undirected  
 
graphs, to hypergraphs, and to relational structures) 
 

 
G = < V, edg(.,.) >   Vertices, edge relation 
 
ϕ    logical formula 
 

G   = ϕ     is a property of G  
 
G  = ϕ (x,y)    is a property of a pair (x,y)   of  vertices of G 
 

 

Example 1 :  the first-order formula 

 
∀  u,x,y,z  ( edg(x,u) & edg (y,u) & edg(z,u) 

        ⇒   x = y  v  y = z v x  = z ) 

                                                                                                    y 
expresses   that  G   has indegree    ≤   2                            x                        u 
 
                                                                                                       z 



 
Example 2: the monadic 2nd-order  formula 
 
∃  X,Y (¬  ∃  x ( x ∈  X & x ∈  Y )  

& ∀  x,y [edg(x,y) ⇒   ¬  (x ∈  X & y ∈  X) 
        &  ¬  ( x ∈  Y & y ∈  Y) 
     & (x ∈  X v   x ∈  Y   v   y ∈  X   v  y ∈  Y)]) 
 
expresses 3-vertex colorability (color classes are X, Y, V(G) - (X ∪  Y)) 
 
 
Example 3 (important): the MS formula   ϕ(x,y)  
 
∃ X ( x ∈  X  &  ¬  (y ∈  X)   
   & ∀ u,w ( u  ∈  X & edg(u, w) ⇒  w ∈  X)) 
 
expresses that there is no directed path  from  x  to  y.  
 
 
 
Example 4: The  2nd-order (non MS) formula 
    
∃ R ( "R is a non-identity bijection on vertices" &  

∀ u,w,u',w'[R(u,u')  &  R(w,w') ⇒    
        (edg (u,w) ⇔  edg(u',w')]) 
 
expresses  the existence of a nontrivial  auto-morphism.



 
Main examples of graph properties 

 
 
First-order  expressible: 
 
 
  degree at most (fixed)  d 
 
  forbidden (fixed) subgraph  
 
  local properties (thm. by Gaifman):  

boolean combinations of properties of the  
    form "there are  m  disjoint 'balls' 
    of radius  r   satisfying a certain 
    first-order  property" 
 
 
Monadic Second-Order expressible properties 
 
  k - vertex colorability (fixed k ;  NP-complete  if  3 ≤ k) 
 
  transitive closures, "path" properties 
     like connectivity, cycles, trees 
 
  forbidden "minors" (Kuratowski Theorem) 
     whence planarity, genus at most  fixed g 



Properties  of processes 
 
Processes  =  Transition  Systems 
 
                   =   Directed  Labelled  Graphs 
 
 
Hierarchy  of  languages 
 
 
On  graphs: 
 
CTL     ⊂    CTL*   ⊂     µ-Calculus    ⊂   MS-Logic 

   = Bisimulation-invariant 
    MS properties 
 

On  binary trees: 
 
 CTL    ⊂  CTL*   ⊂   µ -Calculus    = MS-Logic 
 
 
MSL:    ∀ X , ∃ Y ........ 
 
M-Calculus:   x  ∈  µZ νT ......... 
 
CTL* :   On some infinite path some property   

holds infinitely often 
 



MS-transductions   
 
 
Definition of  an MS-transduction  (sometimes called an  
 
interpretation):  
 
 
 
 A transformation  τ  of  structures,   defined  as follows: 
 
   S                 T  =  τ (S) 
 
   where   T  is  defined  inside  the  structure: 
 
      S ⊕  S ⊕  ... ⊕  S  
 
     (fixed number  of disjoint copies of S) 

by  MS formulas. 
 



 
Example  of  an  MS-transduction 
 
The  square  mapping  δ  on  words:  u  →   uu 
 
 We  let  u  =    aac  
 
  S     •  →  • → •    
       a      a      c      
     
  S ⊕  S    •  →  • → •              •  →  • → • 

     a       a     c             a        a     c  
     p1    p1    p1          p2      p2   p2 
 

 
  δ(S)   •  →  • → •  →  • → • →  •  
     a        a      c        a      a        c  
 
 In δ(S) we  redefine Suc as  follows : 
Suc(x,y) :  ⇔   p1(x) & p1(y) & Suc(x,y) 
     v p2(x) & p2(y) & Suc(x,y) 
      v p1(x) & p2(y) & "x has no  successor"  

& "y has no  predecessor" 
 
 We also  remove  the  "marker" predicates p1, p2. 

 
 



Context-Free  Graph  Grammars 
 
For   words  the  set of context-free  rules: 
 

  S   →  a S T          S   →   b    
 
  T   →  c T T T        T   →   a 
 

is equivalent to  the system  of  set  equations: 
 
  S  =  a S T     ∪     { b }  
 

  T  =  c T T T      ∪    { a } 
 

where S  is the language generated  by S  (idem  for  T   and T). 
 
For  graphs we consider similarily  systems of equations like: 
 
  S  =  f(k(S ), T  )    ∪   { b }  
 
  T  =  f(T , f( g(T ), m(T ))) ∪   { a } 
 
where f is a binary operation,  g, k, m are unary operations on  
graphs,  a, b are basic graphs.  
 
 There are  two sets  of graph operations, related to  tree-width  and 
to  clique-width,  hence we have   two  classes of context-free sets of 
graphs,  called for historical reasons: HR-context-free  (for Hyperedge-
Replacement) and  VR-context-free (for Vertex-Replacement). 



Trees, MS-Transductions and 
Context-free  graph  grammars 

 
For  words: 
      Rational 
 Dyck     transductions    Context-free 
 Language                                          Languages 
 (([()][((()))]))        
              
For graphs: 
        
 Finite   MS- transductions  VR-Context- 
 Binary                                                   free   sets 
 Trees        of  graphs 
 
              
    MS-transductions 

    to incidence graphs 
 
          HR-Context-free 

sets of graphs  
             
 Fact:  Rational and MS-transductions are closed under 
   composition. 



 

MS-compatible  graph transformations. 
 

Definition : Transformations of  relational structures  S 
(or  of  graphs  represented  by structures): 

 
     S                     τ (S) 
 
     τ #(ψ)                ψ 
 
such  that every  MS  formula  ψ  has  an effectively  computable  
backwards  translation τ #(ψ)  , an MS formula, such that : 

 
S   =  τ #(ψ)    iff    τ (S)   =  ψ 

 
 The verification of ψ  in  the object structure τ (S)  reduces  
to  the  verification  of  τ #(ψ)   in  the  given structure S. 
 Informally    S describes  τ (S)   and the MS properties of τ (S)   are 
described by MS properties of S. 
 
Consequence: If  a  set of  structures  L  has  a decidable MS 
satisfiability problem, then so has   τ (L).  
 
Proposition:  Every  MS-transduction  is  MS-compatible. 
 
Fact :    The semantical mappings of the examples 1 to 5 are  
 
MS-compatible  but  are  not MS-transductions  
 



 
Theorem (Courcelle, Walukiewicz) : The unfolding mapping  
 
from directed graphs to trees is MS compatible. 
 
 
Consequences: 
 
1. The  MS  properties  of  the behaviour  of  a  "program" M   
 
(dynamic  properties of M)  can  be expressed by  MS formulas  
 
in M itself  (as MS static  properties of M). 
 
(The  translation mapping is the  same for all "programs" or "transition 
systems", i.e., all  graphs  with  same  set of edge  labels.) 



 
2. The MS satisfiability problem (equiv. the MS theory) of each  
regular tree is decidable (known from Rabin, 1969) and  
moreover, reduces to that of the finite graphs of which they  
are unfoldings. 
 
The recursive mapping :  G              Unf(G)        ThMS(Unf(G)) 
 
            factors  as :                           ThMS(G) 
 
 
Example showing that this is not a trivial fact. 
 
Consider the  ‘shuffle’  mapping ϖ : a*b*                 {a,b}* defined as : 
ϖ(an,bm) = (ab) nb(m - n)    if n ≤ m 
ϖ(an,bm) = (ab) na(n - m)    if n > m. 

Each output word has a decidable MS-satisfiability problem  
(trivially since each output word is finite).  
 

However, ϖ   is not  MS compatible, otherwise the langage    anbn   
would be regular. (Classical argument). 
 

Hence, the MS theory of each word ϖ (w) is decidable but in a 
way that is not uniform in terms of w, considered as a description of 
ϖ(w). 



Observations: 
 
1.The  monadic second-order  theory  of a regular tree  is  
 
decidable. 
 
2. The  (unfolding)  mapping from: 
 
  Finite Regular           Regular trees 
   Systems 
 
    is MS-compatible. 
 
Hence:  2  ⇒  1. 
 
But  2  is much richer. See  example  of ϖ. 



 
3.   MS compatible structure transformations 
 

 

 

MS compatible transformations of structures  : 
 
 

1. Each MS-transduction 
 
 
 

2. The composition of two MS compatible    
 

 transformations (clear from the definition) 
 
 
3. Unfolding 
 
 
4.The Shelah-Stupp-Muchnik tree expansion (proved  
 
by  Walukiewicz). 



 
The Shelah-Stupp-Muchnik  Construction 

 
  Structure                                   Structure     
       M        Tree(M) 
 
 M =  <V, edg(.,.)>  
     
 Tree(M) = <Seq(V), edgSeq(.,.),son(.,.),clone(.)> 
 
 Seq(V)   = nonempty sequences over V, 
 
 edgSeq   = { (wx,wy)  /  w ∈  V*,(x,y) 2 edg} 
    son       = { (w,wx)  /  w ∈  Seq(V), x 2 V}, 
 clone     = {  wxx    /  w ∈  V* , x ∈  V}, 
       (clone = copy  of its  father). 
 
Theorem (Walukiewicz): The mapping M              Tree(M) 

is MS-compatible. 
 
Observation: For  a  graph G, the tree Unf(G) is  MS- definable  inside 
Tree(G)    (whence, definable from Tree(G)  by  an MS-transduction). 
 
Consequence: The mapping  Unf  is  MS-compatible, as composition of  
two  MS-compatible  mappings. 
Actually the case of unfolding (provable without this difficult theorem) would 

suffice for the evaluation of first-order substitutions from which follow the cases of 

algebraic and hyperalgebraic trees.  







Conjecture (Seese): If  a  set  of  (finite) graphs  L  
 
has   a decidable  MS  theory, then it is of the form: 
 
L  = τ(T)  for T a set of finite trees,  

τ an MS transduction. 
 
About  the  structure  of sets  of graphs having a 
 
 decidable MS theory. 
 
 
Related  question:  What is  the  structure  of MS- 
 
compatible  graph  transformations ? 
 
 
The best we know  are  transformations  of the form: 
 
τ = α o Tree  o β  o Tree o γ o..... o Tree o ω 
 
where Tree  is the Shelah-et al.  construction and α, 
 
 β ,..., ω are MS transductions.  What else ? 
 



4. First-Order  substitution  as a basic operation 
 
 F:  function  symbols 
 

 X:  finite set  of first-order variables 
 
 Tω(F,X) = finite and infinite terms  
      (viz. trees)  over   F  and X. 
  
 New operation:  

 for  w  a sequence of n   pairwise distinct variables in X, 
 
  subw(s, t1, ..., tn)  denotes  
     the result of the substitution in 
     s  of  ti   for each  occurrence of 
     the i-th  variable of  w. 
 
  SubX   is the (finite) set  of  all  operations  subw. 
 
We  let  Eval:  

Tω(F U SubX ,X)           Tω(F,X) 
 

be the mapping  that   evaluates   the substitution  operations 
 
hence  eliminates  the substitution symbols. 
 
Example: (A, B, C are any finite or infinite terms) 
 
Eval[subx,y,z(f(f(x,y),g(x,u)),A,B,C) ] =  f(f(A,B),g(A,u)) 



Theorem (B.C.,T.Knapik): The mapping Eval is MS-compatible. 
 
Proof sketch:  
 
The  mapping Eval is the composition  
 

of three  MS-compatible mappings: 
 
1) An MS-transduction  from terms to directed 
   acyclic  graphs, 
 
2) the unfolding Unf, 
 
3) the simultaneous contraction of all ε-labelled 
   edges, also  an MS-transduction. 
 
         t    ( ∈  Tω(F∪ SubX,X)) )                       Eval(t) ( ∈  Tω(F, X)) 
            α                                                    Contraction of ε-edges 

  Infinite d.a.g.         Unf         Infinite tree 
  (sharing)                              with 
  with  ε-edges                       ε-edges 
 





Algebraic  trees  as  Eval(Regular Trees) 
 
A regular tree  (term)  t  over F  is defined  by a finite system 
like: 
 
   t =  f(t, g(t, s)) 
   s =  g(a, f(s,t)) 
 
 
Theorem (Rabin, 1969): MS properties  of  regular trees are         
decidable. 
 
 
 An  algebraic tree  (term)  over F ∪  X can be  defined by  a 
recursive  applicative  program scheme like : 
 
  θ(x,y) =  f(x, y, θ(x,g(y)) ) 
 
or by equation  (*) over F ∪  SubX  (where substitution 
operations are evaluated) : 
 
  t  =  f(x,y, subx,y(t, x, g(y)) )     (*) 
 
 Note  that   t    is in argument position. Hence,  
equation (*)  defines  a regular tree T over F ∪  SubX   
and      t   =  Eval(T). 



 
Theorem:1.    Alg(F,X) = Eval(Reg(F ∪  SubX ,X)) 
 
2.The MS properties of algebraic trees are  
 
decidable. 
 
3. The semantical  mapping from : 

 
 Systems(F,X)  to  Alg(F,X)                              

             
is  MS compatible. 
 
 
Remark : Systems(F,X) is the set of (finite) systems of  
 
algebraic equations written over the finite sets  F  and  X  
 
with unbounded number of ‘unknown’ functions of  
 
maximal arity  Card(X)  
 



 
5.    Hyperalgebraic  trees 
 
 We can define a hierarchy of sets of  infinite trees: 
 
 Alg0(F,X) =  Reg(F,X), 
 
 Alg1(F,X) =  Eval(Reg(F∪ SubY,Y)) ∩ Tω(F,X), 
 ... 
 Algn+1(F,X) =    
    Eval(Algn(F∪ SubY,Y))  ∩ Tω(F,X),. 
 
Theorem: 1. The MS properties of hyperalgebraic  
 
 trees are decidable. 
 
2. The mapping  from  systems  to theories  of  the  
 
corresponding trees is recursive. 
 
 
 
Question :  Which  types of  program scheme do these 
 
   infinite hyperalgebraic trees represent? 



Lambda   schemes 
 
Example : 
 
 x,y,u,v,k : b  ,   ϕ,ψ,g,h : b →  b  
 f : b X b →  b  H : (b → b) X (b → b) X b X b → b 
 
H(ϕ,ψ,x,y) = f [ x, 
       ϕ(H( λu.ϕ(ψ(u)), 
     λv.f(ϕ(v),ψ(h(v))), 
     g(y), 
     ϕ(k)))  ] 
 
 We let K(ϕ,ψ) = λx,y.H(ϕ,ψ,x,y)  
 
of type :  (b → b) X (b → b)  →  ( b X b → b) 
 K is definable  recursively by: 
 
K(ϕ,ψ) = comp2(f, 
    π1, 
    comp1(ϕ, 
      comp2(K[comp1(ϕ,ψ), 

        comp2(f, ϕ,comp1(ψ,h))], 
           comp1(g,π2), 

           comp1(ϕ,k2)))) 
 where: 
 



comp2(ϕ,ψ,κ)  defined as  λw. ϕ( ψ(w) , κ(w)) 
 
corresponds  to  subx,y(.,.,.)  and  
 
comp1(ϕ,ψ)  =   λw. ϕ( ψ(w)) corresponds  to  subx(.,.) 
 
 πi  is  the   i-th  projection :  b X b → b, 
 
k2 is  the constant mapping = k, with 2 arguments. 
 
 Hence  K  defines  an  algebraic  tree  T  over  comp2,   

 

comp1,  the nullary symbols f, g, h, π1 , π2 , k2  
 
and  H  defines  an infinite  tree  t  = Eval(T).  
 
Hence t  is in Alg2. 
 
 
A more  difficult  case: 
 
    H(ϕ, x) = f(x, ϕ(H(λu.f(ϕ(u), x), x))) 
 

It defines actually an algebraic tree. 
  
Question:  Does every  lambda-scheme  define  a  
hyperalgebraic  tree?  
 



An  open question: 
 
 
For a Noetherian  and  confluent  term  rewriting   
 
system,  the normal  form mapping goes from   
 
finite terms  to  finite  terms . 
 
 
When  is  it  an  MS-transduction ? 
 
 
When is  it  MS-compatible? 


