
SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 1

SAT based Abstraction-Refinement using ILP and
Machine Learning Techniques

Edmund Clarke Anubhav Gupta
James Kukula Ofer Strichman

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 2

Abstraction in Model Checking

I

• Set of variables V = {x1, . . . , xn}.

• Set of states S = Dx1 × · · · ×Dxn.

• Set of initial states I ⊆ S.

• Set of transitions R ⊆ S × S.

• Transition system M = (S, I,R).

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 3

Abstract Model

Abstraction Function h : S → Ŝ M̂ = (Ŝ, Î, R̂)

I

h h h h h

Ŝ = {ŝ | ∃s. s ∈ S ∧ h(s) = ŝ}

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 4

Abstract Model

Abstraction Function h : S → Ŝ M̂ = (Ŝ, Î, R̂)

I

I

Î = {ŝ | ∃s. I(s) ∧ h(s) = ŝ}

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 5

Abstract Model

Abstraction Function h : S → Ŝ M̂ = (Ŝ, Î, R̂)

I

I

R̂ = {(ŝ1, ŝ2) | ∃s1. ∃s2. R(s1, s2) ∧ h(s1) = ŝ1 ∧ h(s2) = ŝ2}

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 6

Model Checking

• AGp, p is a non-temporal propositional formula

• p respects h if for all s ∈ S, h(s) |= p⇒ s |= p

p

p

p

p

p

p

p

~p

~p

~p

p p p ~p ~p

p respects h

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 7

Model Checking

• AGp, p is a non-temporal propositional formula

• p respects h if for all s ∈ S, h(s) |= p⇒ s |= p

p

p

p

p

p

~p

~p

~p

p p p ~p ~p

~p

p

p does not respect h

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 8

Preservation Theorem

Let M̂ be an abstraction of M corresponding to the abstraction function h,
and p be a propositional formula that respects h. Then

M̂ |= AGp⇒M |= AGp

p p p

ppp

p

p

~p

~p

p p p p ~p

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 9

Converse of Preservation Theorem

M̂ 6|= AGp 6⇒M 6|= AGp

p p p

ppp

~p

~p

p p p ~p

~p

~p

~p

Counterexample is spurious. Abstraction is too coarse.

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 10

Refinement

h′ is a refinement of h if

1. ∀ s1, s2 ∈ S, h′(s1) = h′(s2) implies h(s1) = h(s2).

2. ∃ s1, s2 ∈ S such that h(s1) = h(s2) and h′(s1) 6= h′(s2).

p

p

p

p

p

p

~p

~p ~p

~p

p p p p ~p ~p

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 11

Refinement

h′ is a refinement of h if

1. ∀ s1, s2 ∈ S, h′(s1) = h′(s2) implies h(s1) = h(s2).

2. ∃ s1, s2 ∈ S such that h(s1) = h(s2) and h′(s1) 6= h′(s2).

p

p

p

p

p

p

~p

~p ~p

~p

p p p p ~p ~p

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 12

Abstraction-Refinement

1. Generate an initial abstraction function h.

2. Build abstract machine M̂ based on h. Model check M̂ . If M̂ |= ϕ,
then M |= ϕ. Return TRUE.

3. If M̂ 6|= ϕ, check the counterexample on the concrete model. If the
counterexample is real, M 6|= ϕ. Return FALSE.

4. Refine h, and go to step 2.

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 13

Abstraction Function

• Partition variables V into visible(V) and invisible(I) variables.
V = {v1, . . . , vk}.

• The partitioning defines our abstraction function h : S → Ŝ. The set
of abstract states is

Ŝ = Dv1 × · · · ×Dvk
and the abstraction functions is

h(s) = (s(v1) . . . s(vk))
x1 x2 x3 x4
 0 0 0 0

 0 0 1 0
 0 0 1 1

 0 0 0 1 } 0 0
x1 x2

• Refinement : Move variables from I to V.

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 14

Building Abstract Model

M̂ can be computed efficiently if R is in functional form, e.g. sequential
circuits.
R(s, s′) = ∃i(

∧m
j=1 x

′
j = fxj(s, i))

R̂(ŝ, ŝ′) = ∃sI∃i(
∧
xj∈V x̂

′
j = fxj(ŝ, s

I, i))

i1 i2 i3

x6x1 x2 x5x3 x4

i1 i2 i3 x3 x4 x5 x6

x1 x2

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 15

Checking the Counterexample

• Counterexample : 〈ŝ1, ŝ2, . . . ŝm〉

• Set of concrete paths for counterexample :

ψm = {〈s1 . . . sm〉 | I(s1) ∧
m−1∧
i=1

R(si, si+1) ∧
m∧
i=1

h(si) = ŝi}

• The right-most conjunct is a restriction of the visible variables to their
values in the counterexample.

• Counterexample is spurious ⇐⇒ ψm is empty.

• Solve ψm with a SAT solver.

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 16

Checking the Counterexample

• Similar to BMC formulas, except

– Path restricted to counterexample.

– Also restrict values of (original) inputs that are assigned by
counterexample.

• If ψm is satisfiable we found a real bug.

• If ψm is unsatisfiable, refine.

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 17

Refinement

• Find largest index f (failure index), f < m such that ψf is satisfiable.

• The set D of all states df such that there is a concrete path 〈d1...df〉
in ψf is called the set of deadend states.

Trace

end
Dead

Abstract

Concrete
Trace

}

• No concrete transition from D to a concrete state in the next abstract
state.

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 18

Refinement

• Since there is an abstract transition from ŝf to ŝf+1, there is a
non-empty set of transitions φf from h−1(ŝf) to h−1(ŝf+1).

φf = {〈sf , sf+1〉 | R(sf , sf+1) ∧ h(sf) = ŝf ∧ h(sf+1) = ŝf+1}

• The set B of all states bf such that there is a transition 〈bf , bf+1〉 in
φf is called the set of bad states.

Trace

end
Dead

Bad

Abstract

Concrete
Trace

{

}

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 19

Refinement

p p p

ppp

~p

~p

p p p ~p

~p

~p

~p

Bad
States

States
Dead

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 20

Refinement

• There is a spurious transition from ŝf to ŝf+1.

• Spurious transition because D and B lie in the same abstract state.

• Refinement : Put D and B is separate abstract states.

∀d ∈ D, ∀b ∈ B (h′(d) 6= h′(b))

p

p

p

p

p

p

~p

~p ~p

~p

p p p p ~p ~p

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 21

Refinement as Separation

Let S = {s1...sm} and T = {t1...tn} be two sets of states (binary
vectors) of size l, representing assignments to a set of variables W ,
|W | = l.

(The state separation problem)
Find a minimal set of variables U = {u1...uk}, U ⊆W , such that for
each pair of states (si, tj), 1 ≤ i ≤ m, 1 ≤ j ≤ n, there exists a variable
ur ∈ U such that si(ur) 6= tj(ur).

Let H denote the separating set for D and B. The refinement h′ is
obtained by adding H to V.

Proof : Since H separates D and B, for all d ∈ D, b ∈ B there exists
u ∈ H s.t. d(u) 6= b(u). Hence, h(d) 6= h(b).

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 22

Refinement as Separation and Learning

• For systems of realistic size,

– It is not possible to generate D and B, either explicitly or
symbolically.

– Computationally expensive to separate large D and B.

• Generate samples for D(denoted SD) and B(denoted SB) and try to
infer the separating variables from the samples.

• State of the art SAT solvers like Chaff can generate many samples in
a short amount of time.

• Our algorithm is complete because a counterexample will eventually
be eliminated in subsequent iterations.

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 23

Separation using Integer Linear Programming

Separating SD from SB as an Integer Linear Programming (ILP) problem:

Min
∑|I|
i=1 vi

subject to: (∀s ∈ SD) (∀t ∈ SB)
∑

1≤i≤|I|,
s(vi) 6=t(vi)

vi ≥ 1

• vi = 1 if and only if vi is in the separating set.

• One constraint per pair of states, stating that at least one of the
variables that separates the two states should be selected.

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 24

Example

s1 = (0,1,0,1) t1 = (1,1,1,1)
s2 = (1,1,1,0) t2 = (0,0,0,1)

Min
∑4
i=1 vi

subject to:

v1 + v3 ≥ 1 /* Separating s1 from t1 ∗ /
v2 ≥ 1 /* Separating s1 from t2 ∗ /
v4 ≥ 1 /* Separating s2 from t1 ∗ /
v1 + v2 + v3 + v4 ≥ 1 /* Separating s2 from t2 ∗ /

Optimal value of the objective function is 3, corresponding to one of the
two optimal solutions (v1, v2, v4) and (v3, v2, v4).

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 25

Separation using Decision Tree Learning

• ILP-based separation:

– Minimal separation set

– Computationally expensive

• Decision Tree Learning based separation:

– Non optimal

– Computationally efficient

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 26

Decision Tree Learning

• Input : Set of examples with classification.

– Each example assigns values to a set of attributes.

• Output : Decision Tree

– Each internal node is a test on some attribute.

– Each leaf corresponds to a classification.

v1

0 1 0 1

0 1

v4v2

−1 +1 +1 −1

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 27

Separation using Decision Tree Learning

Separating SD from SB as a Decision Tree Learning problem:

• Attributes correspond to the invisible variables.

• The classifications are +1 and −1, corresponding to SD and SB,
respectively.

• The examples are SD labeled +1, and SB labeled −1.

Separating set : All the variables present at an internal nodes of the
decision tree.

Proof: Let d ∈ SD and b ∈ SB. The decision tree will classify d as +1
and b as −1. So, there exists a node n in the decision tree, labeled with a
variable v, such that d(v) 6= b(v). By construction, v lies in the output set.

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 28

Example

s1 = (0,1,0,1) t1 = (1,1,1,1)
s2 = (1,1,1,0) t2 = (0,0,0,1)

E = ((0,1,0,1),+1), ((1,1,1,0),+1), ((1,1,1,1),−1), ((0,0,0,1),−1)

v1

0 1 0 1

0 1

v4v2

−1 +1 +1 −1

Separating set : {v1, v2, v4}

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 29

Decision Tree Learning Algorithm

DecTree(Examples,Attributes) ID3 Algorithm

1. Create a Root node for the tree.

2. If all examples are classified the same, return Root with this
classification.

3. Let A = BestAttribute(Examples,Attributes). Label Root with
attribute A.

4. Let Examples0 and Examples1 be subsets of Examples having
values 0 and 1 for A, respectively.

5. Add a 0 branch to the Root pointing to subtree generated by
Dectree(Examples0, Attributes− {A}).

6. Add a 1 branch to the Root pointing to subtree generated by
Dectree(Examples1, Attributes− {A}).

7. return Root.

The BestAttribute procedure returns an attribute (which is a variable in
our case) that causes the maximum reduction in entropy if the set is
partitioned according to this variable.

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 30

Efficient Sampling

• Direct search towards samples that contain more information.

• Iterative Algorithm.

• At each iteration, the algorithm finds new samples that are not
separated by the current separating set.

• Let SepSet denote the separating set for the current set of samples.
New samples that are not separated by SepSet are computed by
solving

Φ(SepSet)
.

= ψf ∧ φ′f ∧
∧

vi∈SepSet
vi = v′i

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 31

Efficient Sampling

SepSet = ∅;

i = 0;

repeat forever {

If Φ(SepSet) is satisfiable, derive di and bi
from solution; else exit;

SepSet = Separating Set for {
⋃i
j=0{dj},

⋃i
j=0{bj}};

i = i+ 1; }

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 32

Experiments

• NuSMV frontend.

• Cadence SMV.

• A public domain ILP solver.

• Chaff.

Experiments conducted on a 1.5GHz Athlon with 3Gb RAM running Linux.

We used the “IU” family of circuits, which are various abstractions of an
interface control circuit from Synopsys.

Circuit SMV Sampling - ILP Sampling - DTL Eff. Samp. - DTL
Time BDD(k) Time BDD(k) S L Time BDD(k) S L Time BDD(k) S L

IU30 0.7 116 0.1 1 0 1 0.1 1 0 1 0.1 1 0 1
IU35 0.6 149 0.1 2 0 1 0.1 2 0 1 0.1 2 0 1
IU40 1.2 225 6.3 21 3 4 0.9 18 5 6 0.6 11 2 3
IU45 37.5 2554 6.1 17 3 4 1.1 18 5 6 0.7 10 2 3
IU50 23.3 2094 19.7 100 13 14 9.8 90 13 14 24.0 1274 4 17
IU55 - - - - - - 2072 51703 6 9 3.0 64 1 6
IU60 - - 7.8 183 4 7 7.8 183 4 7 4.5 109 1 6
IU65 - - 7.9 192 4 7 7.9 192 4 7 3.8 47 1 5
IU70 - - 8.1 192 4 7 8.2 192 4 7 3.8 47 1 5
IU75 102.9 7068 32.0 142 9 10 24.5 397 13 14 24.1 550 2 7
IU80 603.7 39989 31.7 215 9 10 44.0 341 13 14 24.1 186 2 7
IU85 2832 76232 33.1 230 9 10 44.6 443 13 14 25.2 198 2 7
IU90 - - 33.0 230 9 10 44.6 443 13 14 25.4 198 2 7

1

Circuit SMV Sampling - ILP Sampling - DTL Eff. Samp. - DTL
Time BDD(k) Time BDD(k) S L Time BDD(k) S L Time BDD(k) S L

IU30 7.3 324 8.0 113 3 20 7.5 113 3 20 6.5 113 3 20
IU35 19.1 679 11.8 186 4 21 12.7 186 4 21 11.0 186 4 21
IU40 53.6 1100 25.9 260 6 23 19.0 207 5 22 16.1 207 5 22
IU45 226.1 6060 28.3 411 5 22 25.3 411 5 22 22.1 411 5 22
IU50 1754 25102 160.4 2046 13 32 85.1 605 10 27 15120 3791 7 31
IU55 - - - - - - - - - - - - - -
IU60 - - - - - - - - - - - - - -
IU65 - - - - - - - - - - - - - -
IU70 - - - - - - - - - - - - - -
IU75 - - 1080 3716 21 38 586.7 1178 16 33 130.5 1050 5 26
IU80 - - 1136 3378 21 38 552.5 1158 16 33 153.4 1009 5 26
IU85 - - 1162 3493 21 38 581.2 1272 16 33 167.7 1079 5 26
IU90 - - 965 3712 20 37 583.3 1271 16 33 167.1 1079 5 26

1

SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 33

Conclusions and Future Work

• Our algorithm outperforms standard model checking in both execution
time and memory requirements.

• Exploit criteria other than size of separating set for characterizing a
good refinement.

• Explore other learning techniques.

