
Type Checking Systems Code

Greg Morrisett

Cornell University

Abstract. Our critical computing systems are coded in low-level, type-
unsafe languages such as C, and it is unlikely that they will be re-coded in
a high-level, type-safe language such as Java. This invited talk discusses
some approaches that show promise in achieving type safety for legacy
C code.

1 Motivation

Our society is increasingly dependent upon its computing and communications
infrastructure. That infrastructure includes the operating systems, device drivers,
libraries and applications that we use on our desktops, as well as the file servers,
databases, web servers, and switches that we use to store and communicate data.
Today, that infrastructure is built using unsafe, error-prone languages such as
C or C++ where buffer overruns, format string errors, and space leaks are not
only possible, but frighteningly common.

In contrast, type-safe languages, such as Java, Scheme, and ML, ensure that
such errors either cannot happen (through static type-checking and automatic
memory management) or are at least caught at the point of failure (through
dynamic type and bound checks.) This fail-stop guarantee is not a total solution,
but it does isolate the effects of failures, facilitates testing and determination of
the true source of failures, and enables tools and methodologies for achieving
greater levels of assurance. Therefore, the obvious question is:

Why don’t we re-code our infrastructure using type-safe languages?

Though such a technical solution looks good on paper and is ultimately the
“right thing”, there are a number of economic and practical issues that prevent
it from happening.

First, our infrastructure is large. Today’s operating systems consist of tens of
millions of lines of code. Throwing away all of that C code and reimplementing
it in, say Java, is simply too expensive, just as throwing out old Cobol code was
too difficult for Year 2000 bugs.

Second, though C and C++ have many faults, they also have some virtues—
especially when it comes to building the low-level pieces of infrastructure. In
particular, C provides a great deal of transparency and control over data repre-
sentations which is precisely what is needed to build services such as memory-
mapped device drivers, page-table routines, communication buffer management,
real-time schedulers, and garbage collectors. It is difficult if not impossible to re-
alize these services in today’s type-safe languages simply because they force one



to buy into the “high-level language assumption” in order to realize the benefits
of type-safety.

2 Alternatives to High-Level Languages

An alternative to re-coding our infrastructure in a safe language is to change C
and C++ compilers to do more run-time checking to ensure fail-stop behavior.
For instance, the CCured project [6] at Berkeley has recently shown how to au-
tomatically compile C code so that we can ensure memory safety. The approach
is based on dynamically tracking the types and sizes of the sequence of elements
that a pointer might reference, and ensuring that upon dereference, a pointer is
valid. In this respect, CCured is much like Scheme because it relies upon dynamic
type tags, dynamic type tests, and a (conservative) garbage collector to recycle
memory. And, like a good Scheme compiler, CCured attempts to minimize the
dynamic tests and type tags that are necessary to ensure memory safety. Conse-
quently, the resulting code tends to run with relatively little overhead (around
50%), especially when compared to previous research [2, 1] or commercial tools
such as Purify where overheads of 10x are not uncommon.

But just as with Scheme or any other high-level language, CCured is less
than ideal for building low-level infrastructure because control over data rep-
resentations and memory management have been taken from the programmer.
Depending upon the analysis performed by the CCured compiler, a pointer value
may take up one word or two, and data values may be augmented with type tags
and array bounds. The programmer has no idea what her data look like and thus
interfacing to legacy code requires the wrappers and marshallers of a traditional
foreign function interface. Garbage collection may introduce long pauses and
space overheads. And finally, errors are detected at run-time instead of compile
time. Nonetheless, CCured shows that we can achieve fail-stop behavior in a
completely automatic fashion for legacy infrastructure that should be written in
a higher-level language.

Another approach is to throw static analysis at the problem. However, there
are serious tradeoffs in statically analyzing large systems and most current anal-
yses fail in one respect or another. A critical issue is minimizing false positives
(i.e., reporting a potential problem when there is none) else programmers will
not use the tools. One way to achieve this is to sacrifice soundness (i.e., fail
to report some bugs) by choosing careful abstractions that make it easier to
find common mistakes. For example, Engler has recently used very simple flow
analyses to catch bugs in operating systems [5]. The flow analysis is unsound
because, for instance, it does not accurately track alias relationships. Though
there is much merit in tools that identify the presence of bugs, in contexts where
security is a concern, we need assurance of the absence of bugs. Otherwise, an
attacker will simply exploit the bugs that the tools do not find. At a minimum,
we ought to ensure fail-stop behavior so as to contain the damage.

An alternative way to minimize false positives in analysis is to increase the
accuracy. Such accuracy often requires global, context-sensitive, flow-sensitive



analyses that are difficult to scale to millions of lines of code. Few of these
analyses work at all in the presence of features such as threads, asynchronous
interrupts, or dynamic linking—features that are crucial for building modern
systems.

3 Cyclone

Porting code to high-level languages, using compilers that automatically insert
dynamic checks, and using tools to statically analyze programs for bugs each
have their drawbacks and merits. The ideal solution is one that combines their
benefits and minimizes their drawbacks. In particular, the ideal solution should:

– catch most errors at compile time,
– give a fail-stop guarantee at run time, and
– scale to millions of lines of code

while simultaneously:

– minimizing the cost of porting the code from C/C++,
– interoperating with legacy code,
– giving programmers control over low-level details needed to build systems.

For the past two years, Trevor Jim of AT&T and my group at Cornell have
been working towards such a solution in the context of a project called Cy-
clone [4]. Cyclone is a type-safe programming language that can be roughly
characterized as a “superset of a subset of C.” The type system of Cyclone ac-
cepts many C functions without change, and uses the same data representations
and calling conventions as C for a given type constructor. The type system of
Cyclone also rejects many C programs to ensure safety. For instance, it rejects
programs that perform (potentially) unsafe casts, that use unions of incompati-
ble types, that (might) fail to initialize a location before using it, that use certain
forms of pointer arithmetic, or that attempt to do certain forms of memory man-
agement.

Of course, once you rule out these potential errors, you are left with an es-
sentially useless subset of the language. Therefore, we augmented the language
with new type constructors and new terms adapted from high-level languages.
For instance, Cyclone provides support for parametric polymorphism, subtyping,
and tagged unions so that programmers can code around unsafe casts. We use a
combination of default type parameters and local type inference to minimize the
changes needed to use these features effectively. The treatment of polymorphism
is particularly novel because, unlike C++, we achieve separate compilation of
generic definitions from their uses. To achieve this, we must place restrictions
on type abstraction that correspond to machine-level polymorphism. These re-
strictions are realized by a novel kind system which distinguishes those types
whose values may be manipulated parametrically, while retaining control over
data representations and calling conventions.



Cyclone also supports a number of different pointer types that are similar
to those used in the internal language of CCured. These pointer types can be
used to tradeoff flexibility (e.g., arbitrary pointer arithmetic) with the need for
bounds information and/or run-time tests. The difference with CCured is that
Cyclone requires the programmer to make the choice of representation explicit.
This is crucial for building systems that must interoperate with legacy code
and to achieve separate compilation in dynamically linked settings. A combina-
tion of overloading, subtyping, and local type inference helps to minimize the
programmer’s burden.

Cyclone also incorporates a region type system in the style of Tofte and
Talpin [8, 7, 3]. The region type system is used to track the lifetimes of objects
and ensure that dangling pointers to stack allocated objects are not dereferenced.
The region type system can also be used with arena-style allocators to give the
programmer real-time control over heap-allocated storage. Finally, programmers
can optionally use a conservative collector if they are uninterested in the details
of managing memory.

The Cyclone region system is particularly novel in that it provides a smooth
integration of stack allocation, arena allocation, and garbage-collected heap allo-
cation. The support for region polymorphism and region subtyping ensures that
library routines can safely manipulate pointers regardless of the kind of object
they reference. Finally, we use a novel combination of default regions and effects
on function prototypes, combined with local inference to minimize the burden
of porting C code.

All of the analyses used by Cyclone are local (i.e., intra-procedural) so that
we can ensure scalability and separate compilation. The analyses have also been
carefully constructed to avoid unsoundness in the presence of threads. The price
paid is that programmers must sometimes change type definitions or prototypes
of functions, and occasionally rewrite code.

4 Status and Future Work

Currently, we find that programmers must touch about 10% of the code when
porting from C to Cyclone. Most of the changes involve choosing pointer repre-
sentations and only a very few involve region annotations (around 0.6 % of the
total changes.) In the future, we hope to minimize this burden by providing a
porting tool which, like CCured, uses a more global analysis to guess the appro-
priate representation but unlike CCured, produces a residual program that can
be modified and maintained by the programmer so that they retain control over
representations.

The performance overhead of the dynamic checks depends upon the applica-
tion. For systems applications, such as a simple web server, we see no overhead
at all. This is not surprising as these applications tend to be I/O-bound. For sci-
entific applications, we see a much larger overhead (around 5x for a naive port,
and 3x with an experienced programmer). We belive much of this overhead is
due to bounds and null pointer checks on array access. We have incorporated a



simple, intra-procedural analysis to eliminate many of those checks and indeed,
this results in a marked improvement. However, some of the overhead is also
due to the use of “fat pointers” and the fact that GCC does not always opti-
mize struct manipulation. By unboxing the structs into variables, we may find
a marked improvement.

We are currently working to expand the region type and effects system to
support (a) early reclamation of regions and (b) first-class regions in a style
similar to what Walker and Watkins suggest [9]. We are also working on lim-
ited support for dependent types in the style of Hongwei Xi’s Xanadu [10] so
that programmers may better control the placement of bounds information or
dynamic type tags.

References

[1] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of all
pointer and array access errors. Technical Report 1197, University of Wisconsin
- Madison, December 1993.

[2] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of all
pointer and array access errors. In ACM Conference on Programming Language
Design and Implementation, pages 290–301, June 1994.

[3] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inference to von
Neumann machines via region representation inference. In Twenty-Third ACM
Symposium on Principles of Programming Languages, pages 171–183, St. Peters-
burg Beach, FL, January 1996.

[4] Cyclone User’s Manual, 2001. http://www.cs.cornell.edu/projects/cyclone/.
[5] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-

specific, programmer-written compiler extensions. In Proceedings of the Fourth
Symposium on Operating Systems Design and Implementation, San Diego, Cali-
fornia, October 2000.

[6] George C. Necula, Scott McPeak, and Westley Weimer. CCured: Type-safe
retrofitting of legacy code. In Twenty-Ninth ACM Symposium on Principles of
Programming Languages, pages 128–139, Portland, OR, January 2002.

[7] Mads Tofte and Jean-Pierre Talpin. Implementing the call-by-value lambda-
calculus using a stack of regions. In Twenty-First ACM Symposium on Principles
of Programming Languages, pages 188–201, January 1994.

[8] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Infor-
mation and Computation, 132(2):109–176, 1997.

[9] David Walker and Kevin Watkins. On regions and linear types. In ACM In-
ternational Conference on Functional Programming, pages 181–192, September
2001.

[10] Hongwei Xi. Imperative programming with dependent types. In Proceedings
of 15th IEEE Symposium on Logic in Computer Science, pages 375–387, Santa
Barbara, June 2000.


