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Protocol Security

u Cryptographic Protocol

¥ Program distributed over network

¥ Use cryptography to achieve goal

u Attacker

¥ Intercept, replace, remember messages

¥ Guess random numbers, do computation

u Correctness

¥ Attacker cannot learn protected secret
or cause incorrect protocol compl etion



IKE subprotocol from IPSEC

A,  (ga mod p)

 B, (gb mod p)

Result: A and B share secret gab mod p

Analysis i nvolves probabi lity, modular exponenti ation, digital
signatures, communication networks, É

A B

m1

m2
                    , signB(m1,m2)

signA(m1,m2)



Simpler: Challenge-Response

u Alice wants to know Bob is listening

¥ Send ÒfreshÓ number n, Bob returns f(n)

¥ Use encryption to avoid forgery

u Protocol

¥ Alice → Bob:  { nonce }K

¥ Bob → Alice:  { nonce * 5 } K

u Can Alice be sure that
—Message is from Bob?

—Message is in response to one A lice sent?



Important Modeling Decisions

u How powerful is the adversary?

¥ Simple replay of previous messag es

¥ Decompose, reassemble and resend

¥ Statistical analysis, timing attacks, ...

u How much detail in model o f crypto?

¥ Assume perfect cryptography

¥ Include algebraic properties

—encr(x*y) =  encr(x) *  encr (y) for

   RSA encrypt(k,msg) = m sgk mod N



Standard analysis methods

u Finite-state analysis

u Logic based models

¥ Symbolic search of protocol runs

¥ Proofs of correctness in formal logic

u Consider probability and comp lexity

¥ More realistic intruder model

¥ Interaction between protocol and
cryptography

Hard

Easy
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Language Approach         [Abadi , Gordon]

u Write protocol in process calcul us

u Express security using observational equ ivalence

¥ Standard relation from progr amming language theory

      P ≈ Q iff  for all contexts C[ ], same

                obs ervations about C[P] and C[Q]

¥ Context (environment) repres ents adversary

u Use proof rules for ≈ to prove security

¥ Protocol is secure if no adver sary can distinguish it
from some idealized ve rsion of the protocol

Great general idea; application is complicated



Probabilistic Poly-time Analysis

u Add probability, complexity

u Probabilistic polynomial-time pro cess calc

¥ Protocols use probabilistic primitives
—Key generation , nonce, probabilistic e ncryption, ...

¥ Adversary may be probabilistic

u Express protocol and spec in calcu lus

u Security using observational equivalence

¥ Use probabilistic form of process equivalence



Secrecy for Challenge-Response

u Protocol  P

    A → B:   { i } K

     B → A:   { f(i) }  K

u ÒObviouslyÕÕ secret protocol   Q

     A → B:   { random_number }  K

     B → A:   { random_ number }  K

u Analysis:   P ≈ Q   reduces to crypto condition

related to   non-malleability   [Dolev, Dwork, Naor ]

—Fails for RSA encrypti on if  f(i) = 2i



Specification with Authentication

u Protocol  P

    A → B:   { random i } K

     B → A:   { f(i) }  K

     A → B:   Ò OKÓ         if  f(i) r eceived

u ÒObviouslyÕÕ authenticating protoco l   Q

     A → B:   { random i }  K

     B → A:   { random j } K    i , j

     A → B:   Ò OKÓ         if  private i, j match public msgs

public channel private channe l

public channel private channe l



Nondeterminism vs encryption

u Alice encrypts msg and sends to Bob

¥        A → B:   { msg } K

u Adversary uses nondeterminism

¥ Process E0    c〈0〉 | c〈0〉  | É | c 〈0〉

¥ Process E1    c〈1〉  | c〈1〉 | É | c〈1〉

¥ Process E

      c(b 1).c(b2)...c(bn).decrypt(b 1b2...bn, msg)

In reality,  at most 2-n chance to guess n-bit key



Semantics

Nondeterministic SemanticsProbabilistic Semantics
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Methodology

u Define general system

¥ Process calculus

¥ Probabilistic semantics

¥ Asymptotic observational equival ence

u Apply to protocols

¥ Protocols have specific form

¥ ÒAttackerÓ is context of specific form

— Induces coarser obser vational equivalence

This talk: general calculus and properties
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Technical Challenges

u Language for prob. poly-time functions

¥ Extend work of Cobham, Cook, Hofmann

u Replace nondeterminism with probability

¥ Otherwise adver sary is too stro ng ...

u Define probabilistic equivalence

¥ Related to poly-time statistical tests ...



Syntax

u Bounded π-calculus with integer terms

P :: =  0

|       cq(|n|)   〈T〉            send up to q(|n|) bits

|       cq(|n|)  (x). P          receive

|       υcq(|n|)  . P            private channel

|       [T=T] P             test

|       P | P                  parallel composition

|       ! q(|n|)  . P              bounded replicationTerms may contai n symbol n; channel width

and replication boun ded by poly in |n |



Probabilistic Semantics

u Basic idea

¥ Alternate between terms and processes

—Probabilistic evaluation of terms (incl. rand)

—Probabilistic scheduling of parallel processes

u Two evaluation phases

¥ Outer term evaluation

—Evaluate all exposed terms,  evaluate tes ts

¥ Communication

—Match send and receive

—Probabilistic if multiple send-receive pairs



Scheduling

u Outer term evaluation

¥ Evaluate all exposed terms in parallel

¥ Multiply probabilities

u Communication

¥ E(P) = set of eligible subprocesses

¥ S(P) = set of schedulable pairs

¥ Prioritize — private communication first

¥ Choose highest-priority co mmunication
with uniform (or other) probability



Example

u Process

¥ c〈rand+1〉 | c(x).d 〈x+1〉 | d〈 2〉 | d(y). e 〈x+1〉

u Outer evaluation

¥ c〈1〉 | c(x).d 〈x+1〉 | d〈 2〉 | d(y). e 〈x+1〉

¥ c〈2〉 | c(x).d 〈x+1〉 | d 〈2〉 | d(y). e 〈x+1〉

u Communication

¥ c〈1〉 | c(x).d 〈x+1〉 | d〈 2〉 | d(y). e 〈x+1〉

Each 
prob _  

Choose according to probabilistic scheduler



Example (again)

Each with prob 0.5

Choose according to probabilistic scheduler

c〈rand+1〉 | c(x).d 〈x+1〉 | d〈 2〉 | d(y). e 〈x+1〉

c〈2〉 | c(x).d 〈x+1〉 | d 〈2〉 | d(y). e 〈x+1〉

c〈1〉 | c(x).d 〈x+1〉 | d 〈2〉 | d(y). e 〈x+1〉

Outer
Eval

Comm
Step



Complexity results

u Polynomial time

¥ For each process P, there is a poly q (x)
such that

—For all n

—For all probabilistic schedulers

—All minimal evaluation contexts C[ ]

   eval of C[P] halts in time q(|n|+|C[]|)

¥ Minimal evaluation context

—C[ ]  =  c(x).d(y)É[ ] | c 〈20〉 | d〈 7〉 | e 〈492〉 | É



Complexity: Intuition

u Bound on number of communications

¥ Count total number of inputs, multiplyin g
by q(|n|) to account for   ! q(|n|)  . P

u Bound on term evaluation

¥ Closed T evaluated in time qT(|n|)

u Bound on time for each comm step

¥ Example:   c〈m〉 | c(x).P  → [m/x]P

¥ Substitution bounded by orig  length of P

—Size of number m is bounded

—Previous steps prese rve # occurr  of x in P
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How to define process equivalence?

u Intuition

¥ | Prob { C[P] → ÒyesÓ  } - Prob{ C[Q]  → ÒyesÓ  } | < ε

u Difficulty

¥ How do we choose  ε?

—Less than 1/ 2, 1/4, É  ?      (not equiv relation )

—Vanishingly small ? As a fun ction of what?

u Solution

¥ Use security parameter

—Protocol is family { P n } n>0 indexed by key le ngth

¥ Asymptotic form of proces s equivalence

Problem:



Probabilistic Observational Equiv

u Asymptotic equivalence withi n f
Process, context  familie s { Pn } n>0  { Qn } n>0    { Cn } n>0

P ≈f Q if  ∀ contexts C[ ]. ∀ obs v. ∃n0 . ∀ n> n0 .

             | Prob[C n[Pn] → v] - Prob[C n[Qn ] →  v] | < f(n)

u Asymptotically polynomial ly indistinguishable

P ≈ Q  if P ≈f Q  for every polynomial f(n) = 1 /p(n)

           Final defÕn gives robust equivalence relation
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Compare with standard crypto

u Sequence generated from random seed

Pn: let b = n k-bit seque nce generate d from n random bits

      in  PUBLIC 〈b〉  end

u Truly random sequence

Qn: let b = sequence of   nk random bits

      in  PUBLIC 〈b〉  end

u P is crypto strong pseudo-random generator

P ≈ Q

Equivalence is asymptotic in security parameter n



Desired equivalences

u  P | (Q | R) ≈ (P | Q) | R

u  P | Q ≈ Q | P

u  P | 0  ≈  P

u  P ≈ Q   ⇒   C[P] ≈ C[Q]

u P ≈ υ c. ( c<1> | c(x).P)         x ∉FV(P)

 Warning: hard to get all of these É



How to establish equivalence

u Labeled transition system
¥ Allow process to send any output, r ead any input

¥ Label with numbers Òresembling probabilitiesÓ

u Simulation relation

¥ Relation      on processes

¥ If P     Q and P      PÕ, then exists Q Õ

   with Q      QÕ and PÕ     QÕ

u Weak form of prob  equivalence

¥ But enough to get started É
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Hold for uniform scheduler

u  P | (Q | R) ≈ (P | Q) | R

u  P | Q ≈ Q | P

u  P | 0  ≈  P

u  P ≈ Q   ⇒   C[P] ≈ C[Q]



Problem

u Want this equivalence

¥ P ≈ υc. ( c<1> | c(x).P)         x ∉FV(P)

u Fails for general calculus, general ≈
¥ P = d(x).e<x>

¥ C[ ] = υd.( d<1> | d(y).e<0> | [ ] )



Comparison

υd.( d<1> | d(y).e<0> | d(x).e<x> )

υd.( d<1> | d(y).e<0> | υc. ( c<1> | c(x).P) ) 

e<0> e<1> 

left c<1>

e<0> e<1> 

P

e<0> 

Even prioritizing private channels, equivalence fails

c<1>left right  right  left 



Paradox

u Two processors connect by network

u Each does private actions

u Unrealistic interaction

¥ Private coin flip in Beijing does not
influence coin flip in Washington



Solutions

u Modify scheduler

¥ Process private channels left-to-right

¥ Each channel: random send-receive p air

u Restrict syntax of protocol, attack

¥ C[ P ] =  C[ υc. ( c<1> | c(x).P) ]

for all contexts C[ ] that

—do not share private channels

—do not bind channel names used in [ ]
Modification of schedule r more reasonable for protocols



Current State of Project

u Framework for protocol analysis

¥ Determine crypto requireme nts of protocols

¥ Precise definition of crypto primitives

u Probabilistic ptime language

u Process framework

¥ Replace nondeterminism with rand

¥ Equivalence based on ptime statistical tests

u Methods for establishing equivalence

¥ Develop probabilistic simulation technique

u Examples:  Diffie-Hellman , Bellare- Rogaway, É



Compositionality

u Property of observational equiv

                 A ≈  B     C ≈ D

               A|C  ≈  B|D

 similarly for other process form s



Zero-Knowledge Protocol

u  Witness protection program

¥ Q(x)  iff  ∃ w. P(x,w)

¥ Prove  ∃ w. P(x,w) without revealing w

P V

I know a number x with Q(x) 

Answer these questions

Here. Now youÕll believe me.



Identify Friend or Foe

u Sequential

¥ One
conversation at
a time

u Concurrent

¥ Base station
proves identity
concurrently

Base

M

A
V

S

prover verifiers

Are concurrent sessions still zero-k ?




