Probabilistic Polynomial-Time Process Calculus for Security Protocol Analysis

> John Mitchell Stanford University

P. Lincoln, M. Mitchell, A. Ramanathan, A. Scedrov, V. Teague

Outline

u Some discussion of protoco Is u Goals for process calcul us u Specific process calc ulus ¥ Probabilistic semantics ¥ Complexity — probabilistic poly time ¥ Asymptotic equivalence ¥ Pseudo-random number generators ¥ Equational properties and challenges

Protocol Security

u Cryptographic Protocol ¥ Program distributed over network ¥ Use cryptography to achieve goal u Attacker ¥ Intercept, replace, remember messages ¥ Guess random numbers, do computation u Correctness ¥ Attacker cannot learn protected secret incorrect protocol comple ation

IKE subprotocol from IPSEC

Result: A and B share secret g^{ab} mod p

Analysis i nvolves probability, modular exponenti ation, digital signatures, communication networks, É

Simpler: Challenge-Response

u Alice wants to know Bob is listening ¥ Send dreshÓnumber n, Bob returns f(n) ¥ Use encryption to avoid forgery u Protocol \downarrow Alice \longrightarrow Bob: { nonce }_k \downarrow Bob \longrightarrow Alice: { nonce * 5 } _K u Can Alice be sure that

Message is from Bob?

Message is in response to one A lice sent?

Important Modeling Decisions

u How powerful is the adversary? ¥ Simple replay of previous messag es ¥ Decompose, reassemble and resend ¥ Statistical analysis, timing attacks, ... u How much detail in model o f crypto? ¥ Assume perfect cryptography ¥ Include algebraic properties $-\operatorname{encr}(x^*y) = \operatorname{encr}(x)^* \operatorname{encr}(y)$ for RSA encrypt(k msg) = m sg^k mod N

Standard analysis methods

u Finite-state analysis Easy u Logic based models ¥ Symbolic search of protocol runs ¥ Proofs of correctness in formal logic u Consider probability and comp lexity ¥ More realistic intruder model Hard ¥ Interaction between protocol and cryptography

Comparison

Outline

u Some discussion of protoco Is Goals for process calcu lus u Specific process calc ulus ¥ Probabilistic semantics ¥ Complexity — probabilistic poly time ¥ Asymptotic equivalence ¥ Pseudo-random number generators ¥ Equational properties and challenges

Language Approach

u Write protocol in process calcul us

- u Express security using observational equ ivalence
 - ¥ Standard relation from progr amming language theory

 $P \approx Q$ iff for all contexts C[], same

obs ervations about C[P] and C[Q]

¥ Context (environment) repres ents adversary

u Use proof rules for \approx to prove security

¥ Protocol is secure if no adver sary can distinguish it from some idealized ve rsion of the protocol

Probabilistic Poly-time Analysis

u Add probability, complexity u Probabilistic polynomial-time pro cess calc ¥ Protocols use probabilistic primitives -Key generation, nonce, probabilistic e ncryption, ... ¥ Adversary may be probabilistic u Express protocol and spec in calcu lus u Security using observational equivalence ¥ Use probabilistic form of process equivalence

Secrecy for Challenge-Response

u **Protocol** P $A \rightarrow B$: { i } _K $B \rightarrow A$: { f(i) } _K u **Obviously Osecret protocol** Q $A \rightarrow B$: { random_number } _k $B \rightarrow A$: { random_ number } _k u Analysis: $P \approx Q$ reduces to crypto condition related to non-malleability [Dolev, Dwork, Naor] -Fails for RSA encrypti on if f(i) = 2i

Specification with Authentication

- u Protocol P
 - $A \rightarrow B$: { random i } _K
 - $B \rightarrow A$: { f(i) } _K
 - $A \rightarrow B$: ÒOKÓ if f(i) r eceived
- u **Öbviously Öauthenticating protoco** I Q
 - $A \rightarrow B$: { paintothainhet private channe l

 $B \rightarrow A$: { random } k i , j

Nondeterminism vs encryption

u Alice encrypts msg and sends to Bob \downarrow A \rightarrow B: { msg } _k u Adversary uses nondeterminism ¥ Process E₀ $c\langle 0 \rangle | c\langle 0 \rangle | \acute{E} | c \langle 0 \rangle$ ¥ Process E₁ $c\langle 1 \rangle | c\langle 1 \rangle | \acute{E} | c\langle 1 \rangle$ ¥ Process E $c(b_1).c(b_2)...c(b_n).decrypt(b_1b_2...b_n, msg)$

In reality. at most 2-n chance to quess n-bit key

Semantics

NA WARDER AUGENOLIZEN ANNA WARDER AUGENOLIZEN ANNA WARDER AUGENOLIZEN AUNA WARDER AUGENOLIZEN AUNA WARDER AUGEN

Probabilistic Semantics

Prove initial results for ar bitrary scheduler

Methodology

u Define general system

- ¥ Process calculus
- ¥ Probabilistic semantics
- ¥ Asymptotic observational equival ence

u Apply to protocols

- ¥ Protocols have specific form
- ¥ ØAttackerÓs context of specific form
 - Induces coarser obser vational equivalence

Outline

u Some discussion of protoco Is u Goals for process calcul us Specific process cal culus ¥ Probabilistic semantics ¥ Complexity — probabilistic poly time ¥ Asymptotic equivalence ¥ Pseudo-random number generators ¥ Equational properties and challenges

Technical Challenges

u Language for prob. poly-time functions
¥ Extend work of Cobham, Cook,Hofmann
u Replace nondeterminism with probability
¥ Otherwise adver sary is too strong ...
u Define probabilistic equivalence
¥ Related to poly-time statistical tests ...

Syntax

u Bounded π -calculus with integer terms P ::= 0send up to q(|n|) bits $C_{q(|n|)} \langle T \rangle$ $C_{q(|n|)}$ (x). P receive $\upsilon c_{q(|n|)}$. P private channel [T=T]Ptest parallel composition P | PTarms may contain symbolin, dealine planation

and replication boun ded by poly in |n |

Probabilistic Semantics

u Basic idea

¥ Alternate between terms and processes -Probabilistic evaluation of terms (incl. rand) -Probabilistic scheduling of parallel processes u,Two evaluation phases ¥ Outer term evaluation -Evaluate all exposed terms, evaluate tes ts ¥ Communication -Match send and receive

Scheduling

u Outer term evaluation ¥ Evaluate all exposed terms in parallel ¥ Multiply probabilities u Communication $\neq E(P) = set of eligible subprocesses$ \neq S(P) = set of schedulable pairs ¥ Prioritize — private communication first ¥ Choose highest-priority co mmunication with uniform (or other) probability

Example

u Process \neq c(rand+1) | c(x).d (x+1) | d(2) | d(y). e (x+1) u Outer evaluation Each $\downarrow c\langle 1 \rangle | c(x).d \langle x+1 \rangle | d\langle 2 \rangle | d(y). e \langle x+1 \rangle \rangle$ \neq c(2) | c(x).d (x+1) | d(2) | d(y). e (x+1) u Communication $\frac{1}{c(x).d(x+1)} | d(2) | d(y). e(x+1)$ Choose according to probabilistic scheduler

Example (again)

Complexity results

u Polynomial time \neq For each process P, there is a poly q (x) such that -For all n -For all probabilistic schedulers -All minimal evaluation contexts C[] eval of C[P] halts in time q(|n|+|C[]|)

¥ Minimal evaluation context

Complexity: Intuition

u Bound on number of communications ¥ Count total number of inputs, multiplyin g by q(|n|) to account for $!_{q(|n|)}$. P u Bound on term evaluation \neq Closed T evaluated in time $q_{T}(|n|)$ u Bound on time for each comm step **¥** Example: $c\langle m \rangle | c(x).P \rightarrow [m/x]P$ ¥ Substitution bounded by orig length of P -Size of number m is bounded

Outline

u Some discussion of protoco Is u Application of process ca lculus u Specific process calc ulus ¥ Probabilistic semantics Complexity — probabilistic poly time ¥ Asymptotic equivalence ¥ Pseudo-random number generators ¥ Equational properties and challenges

Problem:

How to define process equivalence?

u Intuition

 $\frac{1}{2} | \operatorname{Prob} \{ C[P] \rightarrow \hat{Q}es\acute{O} \} - \operatorname{Prob} \{ C[Q] \rightarrow \hat{Q}es\acute{O} \} | < \varepsilon$

u Difficulty

¥ How do we choose ϵ ?

-Less than 1/2, 1/4, É? (not equiv relation)

—Vanishingly small? As a function of what?

u Solution

¥ Use security parameter

 Protocol is family { P_n }_{n>0} indexed by key le ngth
 ¥ Asymptotic form of proces sequivalence

Probabilistic Observational Equiv

u Asymptotic equivalence withi n f Process, context familie $s \{P_n\}_{n>0} \{Q_n\}_{n>0} \{C_n\}_{n>0}$

 $\mathsf{P} \underset{\mathsf{T}}{\sim} \mathsf{Q} \text{ if } \forall \text{ contexts } \mathsf{C}[]. \forall \text{ obs } \mathsf{v}. \exists \mathsf{n}_0. \forall \mathsf{n} \mathsf{>} \mathsf{n}_0. \\ |\operatorname{Prob}[\mathsf{C}_{\mathsf{n}}[\mathsf{P}_{\mathsf{n}}] \rightarrow \mathsf{v}] - \operatorname{Prob}[\mathsf{C}_{\mathsf{n}}[\mathsf{Q}_{\mathsf{n}}] \rightarrow \mathsf{v}]| < \mathsf{f}(\mathsf{n})$

u Asymptotically polynomial ly indistinguishable $P \approx Q$ if $P \approx_f Q$ for every polynomial f(n) = 1 / p(n)

Final def@ gives robust equivalence relation

Outline

u Some discussion of protoco Is u Application of process ca lculus u Specific process calc ulus ¥ Probabilistic semantics ¥ Complexity — probabilistic poly time Asymptotic equivalence ¥ Pseudo-random number generators ¥ Equational properties and challenges

Compare with standard crypto

u Sequence generated from random seed P_n : let b = n k-bit seque nce generate d from n random bits in PUBLIC (b) end u Truly random sequence Q_n : let b = sequence of n^k random bits in PUBLIC (b) end u P is crypto strong pseudo-random generator $P \approx Q$

Equivalence is asymptotic in security parameter n

Desired equivalences

u P | (Q | R) \approx (P | Q) | R u P | Q \approx Q | P u P | 0 \approx P u P \approx Q \Rightarrow C[P] \approx C[Q]

u P ≈ v c. (c<1> | c(x).P) x ∉ FV(P)

Warning: hard to get all of these É

How to establish equivalence

u Labeled transition system ¥ Allow process to send any output, r ead any input ¥ Label with numbers desembling probabilities Ó u Simulation relation ¥ Relation ~ on processes ¥ If P Q and P PÔthen exists Q Õ with Q QÕand PÕ QÕ u Weak form of prob equivalence ¥ But enough to get started É

Hold for uniform scheduler

u P | (Q | R) \approx (P | Q) | R u P | Q \approx Q | P u P | 0 \approx P u P \approx Q \Rightarrow C[P] \approx C[Q]

Problem

u Want this equivalence $Y P \approx \upsilon C. (C < 1 > | C(X).P) \qquad X \notin FV(P)$ u Fails for general calculus, general \approx Y P = d(X).e < X > $Y C[] = \upsilon d.(d < 1 > | d(Y).e < 0 > | [])$

Comparison

Even prioritizing private channels, equivalence fails

Paradox

u Two processors connect by network
u Each does private actions
u Unrealistic interaction
¥ Private coin flip in Beijing does not influence coin flip in Washington

Solutions

u Modify scheduler ¥ Process private channels left-to-right ¥ Each channel: random send-receive p air u Restrict syntax of protocol, attack ¥C[P] = C[υc. (c<1> | c(x).P)] for all contexts C[] that -do not share private channels -do not bind channel names used in [] Modification of schedule r more reasonable for protocols

Current State of Project

u Framework for protocol analysis ¥ Determine crypto requireme nts of protocols ¥ Precise definition of crypto primitives u Probabilistic ptime language u Process framework ¥ Replace nondeterminism with rand ¥ Equivalence based on ptime statistical tests u Methods for establishing equivalence ¥ Develop probabilistic simulation technique

Examplac: Diffic Hollmon Polloro Pogowov

Compositionality

u Property of observational equiv

$A \approx B \qquad C \approx D$ $A|C \approx B|D$

similarly for other process form s

Zero-Knowledge Protocol

I know a number x with Q(x)

Answer these questions

Here. Now you $\tilde{\Phi}$ believe me.

u Witness protection program
¥Q(x) iff ∃ w. P(x,w)
¥ Prove ∃ w. P(x,w) without revealing w

Identify Friend or Foe

u Sequential ¥ One conversation at a time Base u Concurrent ¥ Base station verifiers prover proves identity Are concurrently nt sessions still zero-k?