
Probabilistic Polynomial-Time
Process Calculus for Security

Protocol Analysis

John Mitchell

Stanford University

P. Lincoln, M. Mitchell,

A. Ramanathan, A. Scedrov , V. Teague

Outline

u Some discussion of protoco ls

u Goals for process calcul us

u Specific process calc ulus

¥ Probabilistic semantics

¥ Complexity — probabilistic poly time

¥ Asymptotic equivalence

¥ Pseudo-random number generators

¥ Equational properties and challenges

Protocol Security

u Cryptographic Protocol

¥ Program distributed over network

¥ Use cryptography to achieve goal

u Attacker

¥ Intercept, replace, remember messages

¥ Guess random numbers, do computation

u Correctness

¥ Attacker cannot learn protected secret
or cause incorrect protocol compl etion

IKE subprotocol from IPSEC

A, (ga mod p)

 B, (gb mod p)

Result: A and B share secret gab mod p

Analysis i nvolves probabi lity, modular exponenti ation, digital
signatures, communication networks, É

A B

m1

m2
 , signB(m1,m2)

signA(m1,m2)

Simpler: Challenge-Response

u Alice wants to know Bob is listening

¥ Send ÒfreshÓ number n, Bob returns f(n)

¥ Use encryption to avoid forgery

u Protocol

¥ Alice → Bob: { nonce }K

¥ Bob → Alice: { nonce * 5 } K

u Can Alice be sure that
—Message is from Bob?

—Message is in response to one A lice sent?

Important Modeling Decisions

u How powerful is the adversary?

¥ Simple replay of previous messag es

¥ Decompose, reassemble and resend

¥ Statistical analysis, timing attacks, ...

u How much detail in model o f crypto?

¥ Assume perfect cryptography

¥ Include algebraic properties

—encr(x*y) = encr(x) * encr (y) for

 RSA encrypt(k,msg) = m sgk mod N

Standard analysis methods

u Finite-state analysis

u Logic based models

¥ Symbolic search of protocol runs

¥ Proofs of correctness in formal logic

u Consider probability and comp lexity

¥ More realistic intruder model

¥ Interaction between protocol and
cryptography

Hard

Easy

Comparison

Low High

H
ig

h
Lo

w

S
op

hi
st

ic
at

io
n

of
 a

tta
ck

s

Protocol complexity

=
Murϕ

=
FDR

= NRL

=

Poly-time calculus

=Athena

=
Hand proofs

=
Paulson=

Bolignano

=
BAN logic

=
Spi-calculus

Outline

u Some discussion of protoco ls

 Goals for process calcu lus

u Specific process calc ulus

¥ Probabilistic semantics

¥ Complexity — probabilistic poly time

¥ Asymptotic equivalence

¥ Pseudo-random number generators

¥ Equational properties and challenges

Language Approach [Abadi , Gordon]

u Write protocol in process calcul us

u Express security using observational equ ivalence

¥ Standard relation from progr amming language theory

 P ≈ Q iff for all contexts C[], same

 obs ervations about C[P] and C[Q]

¥ Context (environment) repres ents adversary

u Use proof rules for ≈ to prove security

¥ Protocol is secure if no adver sary can distinguish it
from some idealized ve rsion of the protocol

Great general idea; application is complicated

Probabilistic Poly-time Analysis

u Add probability, complexity

u Probabilistic polynomial-time pro cess calc

¥ Protocols use probabilistic primitives
—Key generation , nonce, probabilistic e ncryption, ...

¥ Adversary may be probabilistic

u Express protocol and spec in calcu lus

u Security using observational equivalence

¥ Use probabilistic form of process equivalence

Secrecy for Challenge-Response

u Protocol P

 A → B: { i } K

 B → A: { f(i) } K

u ÒObviouslyÕÕ secret protocol Q

 A → B: { random_number } K

 B → A: { random_ number } K

u Analysis: P ≈ Q reduces to crypto condition

related to non-malleability [Dolev, Dwork, Naor]

—Fails for RSA encrypti on if f(i) = 2i

Specification with Authentication

u Protocol P

 A → B: { random i } K

 B → A: { f(i) } K

 A → B: Ò OKÓ if f(i) r eceived

u ÒObviouslyÕÕ authenticating protoco l Q

 A → B: { random i } K

 B → A: { random j } K i , j

 A → B: Ò OKÓ if private i, j match public msgs

public channel private channe l

public channel private channe l

Nondeterminism vs encryption

u Alice encrypts msg and sends to Bob

¥ A → B: { msg } K

u Adversary uses nondeterminism

¥ Process E0 c〈0〉 | c〈0〉 | É | c 〈0〉

¥ Process E1 c〈1〉 | c〈1〉 | É | c〈1〉

¥ Process E

 c(b 1).c(b2)...c(bn).decrypt(b 1b2...bn, msg)

In reality, at most 2-n chance to guess n-bit key

Semantics

Nondeterministic SemanticsProbabilistic Semantics

0.5

0.5

0.2

0.3

0.5

0.2

0.3

0.2

0.3

0.5

0.5

0.5

0.2

0.3

0.2

0.5

0.2

0.3

0.5

0.5

Prove initial results for ar bitrary scheduler

Methodology

u Define general system

¥ Process calculus

¥ Probabilistic semantics

¥ Asymptotic observational equival ence

u Apply to protocols

¥ Protocols have specific form

¥ ÒAttackerÓ is context of specific form

— Induces coarser obser vational equivalence

This talk: general calculus and properties

Outline

u Some discussion of protoco ls

u Goals for process calcul us

 Specific process cal culus

¥ Probabilistic semantics

¥ Complexity — probabilistic poly time

¥ Asymptotic equivalence

¥ Pseudo-random number generators

¥ Equational properties and challenges

Technical Challenges

u Language for prob. poly-time functions

¥ Extend work of Cobham, Cook, Hofmann

u Replace nondeterminism with probability

¥ Otherwise adver sary is too stro ng ...

u Define probabilistic equivalence

¥ Related to poly-time statistical tests ...

Syntax

u Bounded π-calculus with integer terms

P :: = 0

| cq(|n|) 〈T〉 send up to q(|n|) bits

| cq(|n|) (x). P receive

| υcq(|n|) . P private channel

| [T=T] P test

| P | P parallel composition

| ! q(|n|) . P bounded replicationTerms may contai n symbol n; channel width

and replication boun ded by poly in |n |

Probabilistic Semantics

u Basic idea

¥ Alternate between terms and processes

—Probabilistic evaluation of terms (incl. rand)

—Probabilistic scheduling of parallel processes

u Two evaluation phases

¥ Outer term evaluation

—Evaluate all exposed terms, evaluate tes ts

¥ Communication

—Match send and receive

—Probabilistic if multiple send-receive pairs

Scheduling

u Outer term evaluation

¥ Evaluate all exposed terms in parallel

¥ Multiply probabilities

u Communication

¥ E(P) = set of eligible subprocesses

¥ S(P) = set of schedulable pairs

¥ Prioritize — private communication first

¥ Choose highest-priority co mmunication
with uniform (or other) probability

Example

u Process

¥ c〈rand+1〉 | c(x).d 〈x+1〉 | d〈 2〉 | d(y). e 〈x+1〉

u Outer evaluation

¥ c〈1〉 | c(x).d 〈x+1〉 | d〈 2〉 | d(y). e 〈x+1〉

¥ c〈2〉 | c(x).d 〈x+1〉 | d 〈2〉 | d(y). e 〈x+1〉

u Communication

¥ c〈1〉 | c(x).d 〈x+1〉 | d〈 2〉 | d(y). e 〈x+1〉

Each
prob _

Choose according to probabilistic scheduler

Example (again)

Each with prob 0.5

Choose according to probabilistic scheduler

c〈rand+1〉 | c(x).d 〈x+1〉 | d〈 2〉 | d(y). e 〈x+1〉

c〈2〉 | c(x).d 〈x+1〉 | d 〈2〉 | d(y). e 〈x+1〉

c〈1〉 | c(x).d 〈x+1〉 | d 〈2〉 | d(y). e 〈x+1〉

Outer
Eval

Comm
Step

Complexity results

u Polynomial time

¥ For each process P, there is a poly q (x)
such that

—For all n

—For all probabilistic schedulers

—All minimal evaluation contexts C[]

 eval of C[P] halts in time q(|n|+|C[]|)

¥ Minimal evaluation context

—C[] = c(x).d(y)É[] | c 〈20〉 | d〈 7〉 | e 〈492〉 | É

Complexity: Intuition

u Bound on number of communications

¥ Count total number of inputs, multiplyin g
by q(|n|) to account for ! q(|n|) . P

u Bound on term evaluation

¥ Closed T evaluated in time qT(|n|)

u Bound on time for each comm step

¥ Example: c〈m〉 | c(x).P → [m/x]P

¥ Substitution bounded by orig length of P

—Size of number m is bounded

—Previous steps prese rve # occurr of x in P

Outline

u Some discussion of protoco ls

u Application of process ca lculus

u Specific process calc ulus

¥ Probabilistic semantics

¥ Complexity — probabilistic poly time

¥ Asymptotic equivalence

¥ Pseudo-random number generators

¥ Equational properties and challenges

How to define process equivalence?

u Intuition

¥ | Prob { C[P] → ÒyesÓ } - Prob{ C[Q] → ÒyesÓ } | < ε

u Difficulty

¥ How do we choose ε?

—Less than 1/ 2, 1/4, É ? (not equiv relation)

—Vanishingly small ? As a fun ction of what?

u Solution

¥ Use security parameter

—Protocol is family { P n } n>0 indexed by key le ngth

¥ Asymptotic form of proces s equivalence

Problem:

Probabilistic Observational Equiv

u Asymptotic equivalence withi n f
Process, context familie s { Pn } n>0 { Qn } n>0 { Cn } n>0

P ≈f Q if ∀ contexts C[]. ∀ obs v. ∃n0 . ∀ n> n0 .

 | Prob[C n[Pn] → v] - Prob[C n[Qn] → v] | < f(n)

u Asymptotically polynomial ly indistinguishable

P ≈ Q if P ≈f Q for every polynomial f(n) = 1 /p(n)

 Final defÕn gives robust equivalence relation

Outline

u Some discussion of protoco ls

u Application of process ca lculus

u Specific process calc ulus

¥ Probabilistic semantics

¥ Complexity — probabilistic poly time

¥ Asymptotic equivalence

¥ Pseudo-random number generators

¥ Equational properties and challenges

Compare with standard crypto

u Sequence generated from random seed

Pn: let b = n k-bit seque nce generate d from n random bits

 in PUBLIC 〈b〉 end

u Truly random sequence

Qn: let b = sequence of nk random bits

 in PUBLIC 〈b〉 end

u P is crypto strong pseudo-random generator

P ≈ Q

Equivalence is asymptotic in security parameter n

Desired equivalences

u P | (Q | R) ≈ (P | Q) | R

u P | Q ≈ Q | P

u P | 0 ≈ P

u P ≈ Q ⇒ C[P] ≈ C[Q]

u P ≈ υ c. (c<1> | c(x).P) x ∉FV(P)

 Warning: hard to get all of these É

How to establish equivalence

u Labeled transition system
¥ Allow process to send any output, r ead any input

¥ Label with numbers Òresembling probabilitiesÓ

u Simulation relation

¥ Relation on processes

¥ If P Q and P PÕ, then exists Q Õ

 with Q QÕ and PÕ QÕ

u Weak form of prob equivalence

¥ But enough to get started É

r

<
~<

~ <
~

r

Hold for uniform scheduler

u P | (Q | R) ≈ (P | Q) | R

u P | Q ≈ Q | P

u P | 0 ≈ P

u P ≈ Q ⇒ C[P] ≈ C[Q]

Problem

u Want this equivalence

¥ P ≈ υc. (c<1> | c(x).P) x ∉FV(P)

u Fails for general calculus, general ≈
¥ P = d(x).e<x>

¥ C[] = υd.(d<1> | d(y).e<0> | [])

Comparison

υd.(d<1> | d(y).e<0> | d(x).e<x>)

υd.(d<1> | d(y).e<0> | υc. (c<1> | c(x).P))

e<0> e<1>

left c<1>

e<0> e<1>

P

e<0>

Even prioritizing private channels, equivalence fails

c<1>left right right left

Paradox

u Two processors connect by network

u Each does private actions

u Unrealistic interaction

¥ Private coin flip in Beijing does not
influence coin flip in Washington

Solutions

u Modify scheduler

¥ Process private channels left-to-right

¥ Each channel: random send-receive p air

u Restrict syntax of protocol, attack

¥ C[P] = C[υc. (c<1> | c(x).P)]

for all contexts C[] that

—do not share private channels

—do not bind channel names used in []
Modification of schedule r more reasonable for protocols

Current State of Project

u Framework for protocol analysis

¥ Determine crypto requireme nts of protocols

¥ Precise definition of crypto primitives

u Probabilistic ptime language

u Process framework

¥ Replace nondeterminism with rand

¥ Equivalence based on ptime statistical tests

u Methods for establishing equivalence

¥ Develop probabilistic simulation technique

u Examples: Diffie-Hellman , Bellare- Rogaway, É

Compositionality

u Property of observational equiv

 A ≈ B C ≈ D

 A|C ≈ B|D

 similarly for other process form s

Zero-Knowledge Protocol

u Witness protection program

¥ Q(x) iff ∃ w. P(x,w)

¥ Prove ∃ w. P(x,w) without revealing w

P V

I know a number x with Q(x)

Answer these questions

Here. Now youÕll believe me.

Identify Friend or Foe

u Sequential

¥ One
conversation at
a time

u Concurrent

¥ Base station
proves identity
concurrently

Base

M

A
V

S

prover verifiers

Are concurrent sessions still zero-k ?

