Branching vs. Linear Time:
Final Showdown

Moshe Y. Vardi *

*Acknowledging Orna Kupferman and the
Intel FV team

Formal Verification Today

Verification as debugging: Failure of verification
identifies bugs.

e Both specifications and programs attempt to
formalize informal requirements.

e Verification contrasts two independent formalizations.

e Failure of verification reveals inconsistency between
the two formalizations.

Model checking: uncommonly effective debugging
tool

e a systematic exploration of the design state space

e good at catching difficult “corner cases”

Designs are Labeled Graphs

Key Idea: Designs can be represented as transition
systems (finite-state machines)

Transition System: M = (W, I, R, F,)

o IV: states

o [C WW: Initial states

e RC W x W: transition relation

o I C W: fair states

o m: W — Powerset(Prop): Observation function

Fairness: An assumption of “reasonableness” — restrict
attention to computations that visit F' infinitely often,
e.g., "the channel will be up infinitely often”.

Specifications

Linear-Time Specifications: properties of
computations.

Examples:

e “No two processes can be in the critical section at
the same time.” — safety

e “Every request is eventually granted.” — liveness

e “Every continuous request is eventually granted.”
— liveness

e "“Every repeated request is eventually granted.” -
liveness

Linear Temporal Logic

Linear Temporal logic (LTL): logic of temporal
sequences

Main feature: time is implicit

e next ¢: ¢ holds in the next state.
e cventually ¢: ¢ holds eventually
e always ¢: ¢ holds from now on

e o until ¢: ¢ holds until ¥ holds.

Examples

always not (CS; and CSy): mutual exclusion (safety)
always (Request implies eventually Grant): liveness

always (Request implies Request until Grant):
liveness

always eventually Request implies eventually Grant:
liveness

Linear vs. Branching

Linear time: a system generates a set of

computations

Specs: describe computations

Branching time: a program generates
computation tree

Specs: describe computation trees

d

Program Equivalence

Linear Time: P; = Ps

Branching Time: Py = P

Temporal Logics

Specs: Every request is eventually granted

e Linear (LTL): always (Request implies eventually
Grant)

e Branching (CTL): V always (Request implies V
eventually Grant)

LTL vs. CTL: The Long Debate

e Pnueli: 1977

e Lamport: “‘Sometimes’ is sometimes ‘Not Never”’,
1980

e Emerson and Clarke: 1981

e Ben-Ari, Pnueli, and Manna: 1983

e Pnueli: 1985

e Emerson and Lei: “Branching-time logic strikes
back”, 1985

e Emerson and Halpern: "'Sometimes’ and ‘Not

Never' Revisited”, 1986

Conclusion: Philosophically, a draw.

LTL vs. CTL: Expressiveness

Caveat: Linear and branching logics are incomparable.

e [TL: eventually always P — in every computation P
is ultimately true.

o CTL: (V eventually V always P) — P will stabilize at
true within a bounded amount of time.

General Assessment:

e Interesting CTL-LTL: “small”

e Interesting LTL-CTL: “large”

10

LTL vs. CTL: Complexity

Model-Checking Problem: Does T’ satisfy 7

T =n, lp| =m

Time Complexity:

o CTL: O(nm) [CES'86]

o LTL: O(n2™) (PSPACE-complete) [LP'86,5C'85]
Conclusions:

e Low complexity in |T|

e (CTL exponentially easier than LTL

11

Pragmatics

Folk Wisdom: CTL is less expressive than LTL, but
CTL is superior to LTL computationally.

Model Checking in practice: CTL usage dominates

e CTL: SMV, VIS, RuleBase, CheckOff, Motorola

e Linear Time: Cadence’'s SMV, FormalCheck, SPIN,
Intel

Note: Linear Time # LTL!

12

CTL vs. LTL: A Fresh Perspective

Expressiveness
Computational Complexity
Compositionality

Pragmatics

13

Expressiveness

IBM'’s Experience:

e IBM J. of Research and Development: Formal
Véerification Made Easy, 1997

“We found only simple CTL equations to
be intuitively comprehensible; nontrivial CTL
equations are hard to understand and prone to
error.”

o CAV'98: On The-Fly Model Checking, 1998

“CTL is difficult to use for most users
and requires a new way of thinking about
hardware.”

Fact: Sugar, RuleBase's spec language, tries to hide
away CTL

Example:

e [TL: next eventually P, eventually next P

e CTL:V nextV eventually P, V eventually V next P

14

Algorithmic Foundations

Basic Graph-Theoretic Problems:

e Reachability: |s there a finite path from I to F'?

e Fair Reachability: |s there an infinite path from I
that goes through F' infinitely often.

Note: These paths may correspond to error traces,
e.g., deadlock and livelock.

15

CTL Model Checking

Basic Algorithm:

e Iterated reachability analysis (i.e., reachability and
fair reachability)

e Simple recursion on structure of formulas,
e.g., V always 4 eventually P involves a
reachability computation followed by a fair-
reachability computation.

e Computational complexity is linear in size of design
and size of spec.

16

Automata on Infinite Words

Biichi Automaton: A = (X%, S, Sy, p, F)
e Alphabet: X

e States: S

e Initial states: Sy C S

e Transition relation: p C S X ¥ x §

e Accepting states: ' C S

Input word: ag,aq,...

Run: 80,81y
® s0€ Sy
° (si,ai, 87;_|_1) cp fore >0

Acceptance: F' visited infinitely often

17

Temporal Logic vs. Automata

Paradigm: Compile high-level logical specifications
into low-level finite-state language

The Compilation Theorem: [V.-Wolper]

Given an LTL formula ¢, one can construct an
automaton A, such that a computation ¢ satisfies
@ if and only if o is accepted by A,. Furthermore, the
size of A, is at most exponential in the length of ¢.

Example:

e always eventually P:

e eventually always P

18

LTL Model Checking

The following are equivalent:

o M satisfies
e all computations in L(M) satisfy ¢

o L(M)C L(A,)

o L(M||A-,) =10

Bottom Line: To check that M satisfies ¢, compose
M with A-, and check whether the composite system
has a reachable (fair) path. Verification reduces to
reachability or fair reachability.

Intuition: A, is a “watchdog” for “bad” behaviors.
A reachable (fair) path means a bad behavior.

19

Computational Complexity

Worst case: linear in the size of the design space and
exponential in the size of the specification.

Real life: Specification is given in the form of a list

of properties ¢1,---,@,. It suffices to check that M
satisfies @; for 1 <17 < mn.

Moral: There is life after exponential explosion.

The real problem: too many design states — symbolic
methods needed

20

CTL vs. LTL: Comparison

e Invalid Comparison: worst case of an inexpressive
logic against worst case of an expressive logic

e Valid Comparison: competitive analysis — compare
performance of CTL and LTL model checkers on
formulas that are in both logics

— always eventually P
— V always V eventually P

Empirical Claim: On formulas in LTLNCTL, CTL and
LTL model checkers behave similarly, and if they don't,
you can make them (see work by Bloem-Ravi-Somenzi
in CAV'99 and by Maidl in FOCS’00).

21

Compositional Verification

State Explosion:

o T'="Ti||...||Tx

o |T|=|T1| ... |Tk|
P; satisfies 14

P, satisfies 1y 3 Py||P; satisfies 1
C(wa ¢1, ¢2)

e Pi||Py: composition of P; and P;

o C(1,11,19): logical condition relating 1, 11, and
(P

Advantage: apply model checking only to the
underlying modules, which have smaller state spaces.

22

Assume-Guarantee Verification

M guarantees 1 assuming ¢ — (@)YM{3p): for an
arbitrary M', if M||M' = ¢, then M||M' =

true) M;(p;))
true) Ms(p2)

2) M1 (1)

; > (true) My || Ma (1 A 9ha)
1) Ma(p2) |

(
(
<
<

Fact: Checking (¢)M (¢) is exponential in ¢ for both
CTL and LTL [KV'95]

23

It Gets Worsel!

CTL is too weak:

e Crucial: Assumptions have to be strong enough to
ensure guarantee; LTL assumptions may be needed
for a CTL guarantee.

e But: The combination of a CTL guarantee and an
LTL assumption involves a doubly exponential cost
in computational complexity.

In practice

e CTl-based model checkers do not support
compositional reasoning

e Verifiers engage in unsafe reasoning when using
CTL-based model checkers because assumptions are
always needed.

Ken McMillan: “In compositional reasoning use LTL"
(Cadence’s SMV uses linear time).

24

Pragmatics

The linear-time view has numerous other advantages:
o Refinement: L(T}y,,) C L(Tspec) — linear view

o Abstraction: L(T.one) C L(Tapst) — linear view

e Dynamic validation: only linear view available

e Counterexamples: validators want traces

e Bounded Model Checking: Search linear
counterexamples of predetermined size size.

25

What about Concurrency Theory?

But: CTL characterizes bisimulation!

So what?

e Bisimulation is about structure

V next V eventually P vs. V eventually V next P

e Model checking is about behavior

next eventually P vs. eventually next P

e Difference between ab + ac and a(b + c¢) become
clear in a state-based model, in which deadlock is
modeled explicitly

26

Is LTL The Answer?

Question: “Ok, ok. You made your point. Can we
finish the talk and go with LTL then?”

Answer: “Not so fast. Let us reconsider compositional
reasoning.”

27

Compositional Reasoning Reuvisited

Crucial Points:

e Assume-guarantee reasoning is the prevalent way of
reasoning about complicated systems — you always
need assumptions.

e When trying to check that “M guarantees
assuming ", you can weaken v, but you have
to make ¢ as strong as needed.

Corollary 1: Your spec language for assumptions
needs to be as expressive as your hardware modeling
language.

Crucial Point:

e Your assume-guarantee reasoning is not sound,
unless you guarantee your assumptions — danger
of false positives.

Corollary 2: Your spec language needs to be as
expressive as your hardware modeling language.

Fact: LTL is too weak — cannot express finite-state
machines.

28

Beyond Naive Hardware Modeling

Assumptions: abstracted hardware

e Replace gorry detail by nondeterminism

e Eliminate possible runs by using fairness

Note: Nondeterministic FSMs with fairness conditions
are Biichi automata, which express w-regularity (more
expressive than LTL).

Question: Can we make Biichi automata into a spec
language?

29

What Is Logic?

Features of Logic:

e Closure under Boolean connectives: if ¢ and 1) are
formulas, then ¢ A 4, ¢ — 1 are formulas.

e Closure under substitution: atomic propositions can
be replaced by formulas; if always p and eventually g
are formulas, then always eventually q is a formula.

30

Extended Temporal Logic

ETL:

e Start with Bichi automata where the labels are
atomic propositions

e Close under Boolean connectives (compositionality)

e Close under substitutions (re-usability)

Note: Closure under Boolean connectives and
substitutions is not necessary for expressiveness.
FormalCheck does not have it.

Example:

31

ETL: Pros and Cons

Advantages:

e Expressive enough for assume-guarantee reasoning

Pnueli, 1986: “In order to perform compositional
specification and verification, it is necessary to have
the full power of ETL."

e Formalism (FSMs) is very familiar to hardware
designers

e \Worst-case complexity same as LTL.
Disadvantages:

e Nesting of machines is conceptually difficult
e No experimental validation (yet)

e Complementation is known to be difficult

Bottom Line: More research needed

32

Other Formalisms

e u-calculus:

— One temporal connective (next) plus fixpoint
operators
— Unreadable: always eventually P

(gfp X)(Ifp Y)(X Anext(PVY))

o QPTL:

— LTL plus propositional quantifiers
— Example:

(AX) (X Aalways(X < next—X)Nalways(X — P))

— Complexity: nonelementary (unbounded stack of
exponentials)!

33

A Pragmatic Proposal

Competing demands on real languages:

Expressiveness: supports compositional reasoning

Usability: can be used by verification engineers

Closure: supports specification libraries

Implementability: feasible implementation

History: consistency with prior experience of users

34

FTL: ForSpec Temporal Logic

ForSpec: Intel’s new formal specification language

key features:

e linear-time logic, with fully w-regularity

e rich set of operations of Boolean and arithmetical
operations

e time windows (P wuntil [10,15] Q)

e regular events
always((req, (—ack)*, ack) triggers

(true™, grant, (—rel)*,rel))

e universal propositional quantification

e hardware-oriented features (multiple clocks and
resets)

35

Did We Waste 20 Years on CTL?

Absolutely not!

e Usefulness of model checking demonstrated

e Symbolic reachability and fair reachability
algorithms

e CTL model checkers as back-end for linear-
time model checkers (Cadence’s SMV and Intel’s
ForSpec)

e CTL is useful in checking correct modeling, e.g.,
YV always 3 true says that there is a fair path from
every state.

e Branching time is appropriate in game-theoretic
settings, e.g., Al planning and controller synthesis.

36

Conclusions

e In spite of 20 years of research, this issue has not
been resolved yet

e CTL is clearly not adequate as a spec language
e LTl is better, but has weaknesses
e [TL is a strong industrial contender

My bottom line:

e Let's close the linear-time vs. branching time
debate: linear time won!

e Let's re-open the linear-time vs. linear-time debate
(e.g., FTL vs. FormalCheck vs. ITL).

e Let's develop linear-time model checking technology.

37

