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my focus
> attack essence of software design
-- structures and how they change
» incremental and partial modelling
> automatic, interactive analysis

attempt to get benefits of
> SMV: automatic analysis
» 7. expression of structure
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’che challenge tractable

inexpressive

language must support
> complex data structures
> declarative specification
partiality, separation of concerns

analysis must be

» fully automatic
» interactive performance
> easy to interpret output

expressive
intractable




key ideas: foundations




key ideas: foundations

language is first order logic + relations
» all data structures encoded as relations
> hierarchy with higher-arity relations




key ideas: foundations

language is first order logic + relations
> all data structures encoded as relations
> hierarchy with higher-arity relations

analysis is model finding
» make decidable by bounding universe
» ‘small scope hypothesis’




key ideas: foundations

language is first order logic + relations
> all data structures encoded as relations
> hierarchy with higher-arity relations

analysis is model finding
> make decidable by bounding universe
> ‘small scope hypothesis’

exploit SAT technology
» analyzer is a compiler
» symmetry breaking, skolemization, sharing, etc

» pluggable backend
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key ideas: pragmatics

syntax
» ASCII based
> prefer existing conventions

semantics
> relations only: no scalars, sets or tuples
a represented as {a}
(a,b) represented as {(a,b)}
> gives simpler syntax
> no complications from partial functions
undefined, null, maybe, non-denoting terms

visualization
» customizable, no built in notion of state, eg.
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Chord peer-to-peer lookup (Wee)
Intentional Naming (Khurshid)

Key management (Taghdiri)

Microsoft COM (Sullivan)

Classic distributed algorithms (Shlyakhter)
Firewire leader election (Jackson)
Red-black tree invariants (Vaziri)
RM-ODP meta modelling (EPFL)
Role-based access control (BBN)
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>
>

taught in courses at
» CMU, Waterloo, Wisconsin, Rochester, Kansas State, Irvine,
Georgia Tech, Queen’s, Michigan State, Imperial, Colorado
State, Twente, WPI, MIT
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elevator example
> translating a fragment
» expressing constraints
> trace-based analysis

bounding traces
> how long a trace?

application to code
> analysis, testing

related work & conclusions
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example: elevator policy

challenge
> specify a policy for scheduling elevators

tight enough
> all requests eventually served
» don’t skip request from inside lift

loose enough
» no fixed configuration of floors, lifts, buttons
> not one algorithm but a family
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approach: promises

deny request
> ‘skipping’: don’t stop at floor
> ‘bouncing’: double back before floor

policy
> a lift can’t deny a request from inside
> if a lift denies a floor request
some lift promises to take it later

freedoms
» divide requests amongst lifts
» postpone decision until first skip or bounce
> unlike ‘closest serves’, can balance load
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basic abstractions

floor layout
> orderings above and below
> top and bottom floors

buttons
» inside lift and at floors
» each has an associated floor
> in a given state, some lit

elevator state
> at or approaching a floor
> rising or falling
> promises to serve some buttons

at floor 2,
falling

approaching
floor 2,
rising

at floor 1,
rising
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lanquage elements

relations
sig State {at: Lift ->? Floor}
declares relation at with values like {(s0,p0,f0),(s1,p0,f1)}

operators
+ & - union, intersection, difference, join

s.at the lift/floor mapping for state s
p.(s.at), s.at[p] the floor of lift p in state s

at = {(s0,p0,10),(s1,p0,f1)} , s = {(s1)}, p = {(p0)}
s.at = {(p0,f1)}, s.at[p] = {(f1);

formulas
in means subset
s.at[p]in f if p is at a floor in state s, that floor is f
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example

sig Floor {above, below: option Floor}
-- above, below map each floor to at most one floor

sig Lift {} -- introduces a set, no relations

sig State {at, approaching: Lift ->? Floor}
-- at, approaching map each state to a partial function

fact {all s: State, p: Lift | one s.(at+approaching)(p]};
-- global constraint: in a state, lift is at or approaching one floor

fun show () {Floor in State.at[Lift]}
-- invocable constraint: each floor has a lift at it in some state

run show for 2 -- find instance with 2 states, lifts, floors
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translation

sig Floor {above, below: option Floor}
-- allocate boolean variables Floor|i] , aboveli,j| , below]i,j]
-- interpretation: aboveli,j| is true if jth floor is above ith floor

-- ranges of i, j etc determined by scope: for 2 floors, i,j € 0..1

sig Lift {} -- allocate Lift][i|

sig State {at, approaching: Lift ->? Floor}
-- allocate at/i,j,k| , approaching]i,j,k]

fact {all s: State, p: Lift | one s.(at+approaching)(p]};
fun show () {Floor in State.at[Lift]}
-- create formula Vk. Floor[k]=di,j. at[i,j,k] A State[i] ALift[j]

run show for 2 -- solve formula
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process

button: Floor LiftButton,
buttons: set LiftButton

Jutton {floor: FL
m m n d j LiftButton extends Button {lift: Lift}
CO a- 5] Floor n extends But {

UpButton, DownButton extends FloorButton {}
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constraints

lift physics & hardware
> can’t be at and approaching a floor
> can’t jump from floor to floor
> can’t change direction between floors

policy
> can’t skip a request from inside the lift
> buttons reset when requests serviced

analyses
» generate samples of states, steps, traces
> show policy implies desired properties (eg, no starvation)
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part rising, falling: set Lift
at, approaching: Lift ->? Floor
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fun LiftPosition (s: State) {
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-- lift is not at and approaching same floor
no s.at[p] & s.approaching(p]
-- can't be approaching the bottom floor when rising
p in s.rising => s.approaching[p] '= Bottom
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static environmental constraints

sig Bottom extends Floor {}

sig State {
part rising, falling: set Lift
at, approaching: Lift ->? Floor

}
fun LiftPosition (s: State) {

|l - |
all p !_"Ft {

function: an ‘invocable' constraint

-- lift is not at and approaching same floor

no s.at[p] & s.approaching[p]

-- can't be approaching the bottom floor when rising
p in s.rising => s.approaching[p] '= Bottom

.
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all p: Lift {
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s'.at[p] in s.(at + approaching)[p]

.




dynamic environmental constraints

fun LiftMotion (s, s': State) {
all p: Lift {
-- if at a floor after, was at or approaching that floor before
s'.at[p] in s.(at + approaching)[p]

.

s'.at[p] in s.(at + approaching)[p]
all f: Floor | f = s’.at[p] => f = s.at[p] or f = s.approaching|p]




dynamic environmental constraints

S pre, s’ post:
just a convention

fun LiftMotion (s, s': State){
all p: Lift {
-- if at a floor after, was at or approaching that floor before
s'.at[p] in s.(at + approaching)[p]
.}
}

terse relational operators
s'.at[p] in s.(at + approaching)[p]
all f: Floor | f = s’.at[p] => f = s.at[p] or f = s.approaching|p]
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fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}

fun Towards (s: State, p: Lift, f: Floor) {
-- p is going towards serving floor f
let next = nextFloor(s,p) |
f in s.at[p].Anext + s.approaching[p].*next

}

fun Denies (s, s': State, p: Lift, b: Button) {
-— p was going to serve b, but is no longer
let f = b.floor |
Towards (s,p,f) and not Towards (s',p,f) and !Serves (s,s',p,b)
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policy: defining denial

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}

fun Towards (s: State, p: Lift, f: Floor) { transitive closure
-- p is going towards serving floor f
let next = nextFloor(s,p)
fin s.at[pl.Anext + s.approaching[pl.*next

}

fun Denies (s, s': State, p: Lift, b: Button) {
-- p was going to serve b, but is no longer
let f = b.floor |
Towards (s,p,f) and not Towards (s',p,f) and !Serves (s,s',p,b)

}
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policy

sig State {
lit: set Button,
promises: Lift -> Button, ...

}
fun Policy (s, s': State) {

-- a lift can't deny a promise or a request from inside the lift
no p: Lift, b: s.promises[p] + p.buttons & s.lit | Denies (s,s',p,b)
-- if a lift denies a request some lift serves it or promises to
all b: s.lit & FloorButton - s.promises|[Lift], p: Lift |
Denies (s,s',p,b) =>
(some q: Lift | Serves(s,s',q,b)) or b in s'.promises[Lift]




policy

sig State {
lit: set Button,
promises: Lift -> Button, ...

}
fun Policy (s, s': State) {

-- a lift can't deny a promise or a request from inside the lift
no p: Lift, b: s.promises[p] + p.buttons & s.lit | Denies (s,s',p,b)
-- if a lift denies a request some lift serves it or promises to
all b: s.lit & FloorButton - s.promises|[Lift], p: Lift |
Denies (s,s',p,b) =>
(some q: Lift | Serves(s,s',q,b)) oi(b in s'.promises[Lift]

non-deterministic
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putting things together

fun Trans (s, s': State) {
-- the before and after positions and the motion are legal
LiftPosition (s) and LiftPosition (s') and LiftMotion (s,s’)
-- the policy is satisfied
Policy (s,s’)
-- the buttons are reset appropriately
some press: set Button | ButtonUpdate (s,s’,press)

}
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ahimating denial

fun ShowPolicy (s, s': State) {
Trans (s, s')
some b: s.lit & FloorButton, p: Lift | Denies (s,s',p,b)
no s.promises & some s’.promises

}
run ShowPolicy for 2 but 3 Floor
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the denying lift
the denied button

Floor_1
up: Button_1(h)
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the denying lift
- Button_1
Lift_0 Button_0 (b) the denied button

(rising] floar: Floor_D flaor Flaor 1

approaching

|
Floor_Z

Lift_1
(rising, p)

approaching promises |\ at

Flaaor_1 \

up: Button_1(h)* FI 2
oor_

floor: Floor_1 1

below

} |
Floor_ 0 below at \prumiSES
up: Button _0O 1
F||:||:|r_1 Eutton_0
up: Button_1ih) floar: Floar_0

another lift promises below

| |
Floar_0
up: Button_O




traces: checking starvation




traces: checking starvation

fun Trace () {
-— a state is related to its successor by the transition relation
all s: State - Ord[State].last |
let s' = Ord[State].next[s] | Trans (s,s’)

}




traces: checking starvation

fun Trace () {
-— a state is related to its successor by the transition relation
all s: State - Ord[State].last |
let s' = Ord|[State].next[s] | Trans (s,s’)
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Trace () =>
-- then a button lit in the start state is eventually reset
all b: (Ord[State].first).lit | some s': State | b lin s'.lit
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traces: checking starvation

fun Trace () {
-— a state is related to its successor by the transition relation
all s: State - Ord[State].last |
let s' = Ord|[State].next[s] | Trans (s,s’)
}

assert EventuallyServed {
-- if the states form a trace
Trace () =>
-- then a button lit in the start state is eventually reset
all b: (Ord[State].first).lit | some s': State | b lin s'.lit
}

check EventuallyServed for 3 Lift, 3 Button, 3 Floor, 8 State
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counterexample!

- s
— "y,

»~  Button_2 .
l..._‘ floor: Floor_0 '_,J

— —

assert EventuallyServed {
Trace () and some Lift =>
all b: (Ord[State].first).lit | some s': State | b lin s'.lit
}
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another Lift_1 promises
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> relations for all structuring
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> relational operators
succinct, idioms easy to grasp
students did lift problem as homework after 3 lectures

one analysis -- model finding
» for simulation and consequence checking
> (for checking refactoring)
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for safety properties, check all traces
> but how long? ie, what is scope of State?

idea: bound the diameter
> if all states reached in path <k
> enough to consider only traces < k

strategy
> ask for loopless trace of length k+1
if none, then k is a bound
> tighter bounds possible: eg, no shortcuts

like bounded model checking
> but can express conditions directly

@

diameter = 1
max loopless =1

diameter = 1
max loopless = 5
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applica’cions to code

Alloy Annotation Language
> mutation, nulls, dynamic dispatch

test suite generation
> ask analyzer for instances of rep invariant
> can test one operation of an abstract type
> symmetry breaking gives good coverage

code analysis
» translate body of method into Alloy constraint
» assert that body implies specification
> analyzer gives counterexamples heap traces

example: red-black trees
all x,y: Leaf | #(x.~*children & Black) = #(y.~*children & Black)
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Object Constraint Language (IBM)
> not fully declarative
> pre/post built-in
> Smalltalk-like syntax for quantifiers

not designed for analysis
> ‘tool just like Alloy’s, but with Joe User in place of Chaff’

many researchers working on fixing it
> better to start again with something simpler?
> must we really discard traditional logic?
> is this really what industry needs?

see UML metamodel in Alloy on sdg.lcs.mit.edu/alloy
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type analyses
> scalable, compositional, economical
» can’t express complex structural properties

proof-based techniques (eg, PCC)
> complete: good when adversary seeds bugs (but ESC)
» can’t check structural properties without lemmas

shape analyses (eg, PEGs, TVLA)
» automatic and complete for whole program
> but for modular analysis, not complete
eg, assume arguments to procedure aren’t aliased
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conclusion

summary
» executability # loss of abstraction
> analysis is more than verification
> first-order logic can be tractable

current challenges
> documenting idioms
> tool performance

from 30 bits (1995) to 1000 bits (2002)
> design conformance

http://sdg.lcs.mit.edu/alloy
» tool downloads
> papers




