Alloy

Daniel Jackson
MIT Lab for Computer Science
ETAPS, April 10, 2002

joint work with:
Ilya Shlyakhter, Manu Sridharan, Sarfraz Khurshid
Brian Lin, Jesse Pavel, Mana Taghdiri,
Mandana Vaziri, Hoeteck Wee

non supporte

H: 42.5Hz V:85.4Hz

didn’t you bring a hardcopy backup?
fool!

non supporte

H: 42.5Hz V:85.4Hz

motivations

motivations

‘software model checking’
» system implemented in software?
» infinitely many states?
> handle code directly?

motivations

‘software model checking’
> system implemented in software?
> infinitely many states?
> handle code directly?

my focus
» attack essence of software design
-- structures and how they change
» incremental and partial modelling
» automatic, interactive analysis

motivations

‘software model checking’
> system implemented in software?
> infinitely many states?
> handle code directly?

my focus
> attack essence of software design
-- structures and how they change
» incremental and partial modelling
> automatic, interactive analysis

attempt to get benefits of
» SMV: automatic analysis
» Z.: expression of structure

motivations

‘software model checking’
> system implemented in software?
> infinitely many states?
> handle code directly?

my focus
> attack essence of software design
-- structures and how they change
» incremental and partial modelling
> automatic, interactive analysis

attempt to get benefits of
> SMV: automatic analysis
» 7. expression of structure

Pittsburgh, home of SMV

motivations

‘software model checking’
> system implemented in software?
> infinitely many states?
> handle code directly?

my focus
> attack essence of software design
-- structures and how they change
» incremental and partial modelling
> automatic, interactive analysis

attempt to get benefits of
> SMV: automatic analysis
» 7. expression of structure

Oxtford, home of Z

’che challenge tractable

inexpressive

expressive
intractable

the challenge

language must support
» complex data structures
» declarative specification
partiality, separation of concerns

tractable
inexpressive

expressive
intractable

’che challenge tractable

inexpressive

language must support
> complex data structures
> declarative specification
partiality, separation of concerns

analysis must be

» fully automatic
» interactive performance
> easy to interpret output

expressive
intractable

key ideas: foundations

key ideas: foundations

language is first order logic + relations
» all data structures encoded as relations
> hierarchy with higher-arity relations

key ideas: foundations

language is first order logic + relations
> all data structures encoded as relations
> hierarchy with higher-arity relations

analysis is model finding
» make decidable by bounding universe
» ‘small scope hypothesis’

key ideas: foundations

language is first order logic + relations
> all data structures encoded as relations
> hierarchy with higher-arity relations

analysis is model finding
> make decidable by bounding universe
> ‘small scope hypothesis’

exploit SAT technology
» analyzer is a compiler
» symmetry breaking, skolemization, sharing, etc

» pluggable backend

key ideas: pragmatics

key ideas: pragmatics

syntax
» ASCII based
» prefer existing conventions

key ideas: pragmatics

syntax
» ASCII based
> prefer existing conventions

semantics
» relations only: no scalars, sets or tuples
a represented as {a}
(a,b) represented as {(a,b)}
» gives simpler syntax
> no complications from partial functions
undefined, null, maybe, non-denoting terms

key ideas: pragmatics

syntax
» ASCII based
> prefer existing conventions

semantics
> relations only: no scalars, sets or tuples
a represented as {a}
(a,b) represented as {(a,b)}
> gives simpler syntax
> no complications from partial functions
undefined, null, maybe, non-denoting terms

visualization
» customizable, no built in notion of state, eg.

what’s been done?

what’s been done?

sample applications

>
>
>
>
>
>
>
>
>

Chord peer-to-peer lookup (Wee)
Intentional Naming (Khurshid)

Key management (Taghdiri)

Microsoft COM (Sullivan)

Classic distributed algorithms (Shlyakhter)
Firewire leader election (Jackson)
Red-black tree invariants (Vaziri)
RM-ODP meta modelling (EPFL)
Role-based access control (BBN)

what’s been done?

sample applications

Chord peer-to-peer lookup (Wee)
Intentional Naming (Khurshid)

Key management (Taghdiri)

Microsoft COM (Sullivan)

Classic distributed algorithms (Shlyakhter)
Firewire leader election (Jackson)
Red-black tree invariants (Vaziri)
RM-ODP meta modelling (EPFL)
Role-based access control (BBN)

>
>
>
>
>
>
>
>
>

taught in courses at
» CMU, Waterloo, Wisconsin, Rochester, Kansas State, Irvine,
Georgia Tech, Queen’s, Michigan State, Imperial, Colorado
State, Twente, WPI, MIT

outline of rest of t3lk

outline of rest of t3lk

elevator example
» translating a fragment
> expressing constraints
» trace-based analysis

outline of rest of t3lk

elevator example
> translating a fragment
> expressing constraints
> trace-based analysis

bounding traces
> how long a trace?

outline of rest of t3lk

elevator example
> translating a fragment
» expressing constraints
> trace-based analysis

bounding traces
> how long a trace?

application to code
> analysis, testing

outline of rest of t3lk

elevator example
> translating a fragment
» expressing constraints
> trace-based analysis

bounding traces
> how long a trace?

application to code
> analysis, testing

related work & conclusions

example: elevator policy

example: elevator policy

challenge

» specify a policy for scheduling elevators

example: elevator policy

challenge
> specify a policy for scheduling elevators

tight enough
» all requests eventually served
» don’t skip request from inside lift

example: elevator policy

challenge
> specify a policy for scheduling elevators

tight enough
> all requests eventually served
» don’t skip request from inside lift

loose enough
» no fixed configuration of floors, lifts, buttons
> not one algorithm but a family

approach: promises

approach: promises

deny request
» ‘skipping’: don’t stop at floor
» ‘bouncing’: double back before floor

approach: promises

deny request
> ‘skipping’: don’t stop at floor
> ‘bouncing’: double back before floor

policy
» a lift can’t deny a request from inside
» if a lift denies a floor request
some lift promises to take it later

approach: promises

deny request
> ‘skipping’: don’t stop at floor
> ‘bouncing’: double back before floor

policy
> a lift can’t deny a request from inside
> if a lift denies a floor request
some lift promises to take it later

freedoms
» divide requests amongst lifts
» postpone decision until first skip or bounce
> unlike ‘closest serves’, can balance load

basic abstractions

basic abstractions

floor layout
» orderings above and below
» top and bottom floors

basic abstractions

floor layout
> orderings above and below
> top and bottom floors

buttons
» inside lift and at floors
» each has an associated floor
> in a given state, some lit

basic abstractions

floor layout
> orderings above and below
> top and bottom floors

buttons
» inside lift and at floors
» each has an associated floor
> in a given state, some lit

elevator state
» at or approaching a floor
» rising or falling
» promises to serve some buttons

basic abstractions

floor layout
> orderings above and below
> top and bottom floors

buttons
» inside lift and at floors
» each has an associated floor
> in a given state, some lit

elevator state
> at or approaching a floor
> rising or falling
> promises to serve some buttons

basic abstractions

floor layout
> orderings above and below
> top and bottom floors

buttons
» inside lift and at floors
» each has an associated floor
> in a given state, some lit

elevator state
> at or approaching a floor
> rising or falling
> promises to serve some buttons

at floor 1,
rising

basic abstractions

floor layout
> orderings above and below
> top and bottom floors

buttons
» inside lift and at floors
» each has an associated floor
> in a given state, some lit

elevator state
> at or approaching a floor
> rising or falling
> promises to serve some buttons

approaching
floor 2,
rising

at floor 1,
rising

basic abstractions

floor layout
> orderings above and below
> top and bottom floors

buttons
» inside lift and at floors
» each has an associated floor
> in a given state, some lit

elevator state
> at or approaching a floor
> rising or falling
> promises to serve some buttons

at floor 2,
falling

approaching
floor 2,
rising

at floor 1,
rising

lanquage elements

lanquage elements

relations
sig State {at: Lift ->? Floor}
declares relation at with values like {(s0,p0,f0),(s1,p0,f1)}

lanquage elements

relations
sig State {at: Lift ->? Floor}
declares relation at with values like {(s0,p0,f0),(s1,p0,f1)}

operators
+ & - union, intersection, difference, join

s.at the lift/floor mapping for state s
p.(s.at), s.at[p] the floor of lift p in state s

at = {(s0,p0,£0),(s1,p0,f1)} , s = {(s1)}, p = {(p0)}
s.at = {(p0,f1)}, s.at[p] = {(f1)}

lanquage elements

relations
sig State {at: Lift ->? Floor}
declares relation at with values like {(s0,p0,f0),(s1,p0,f1)}

operators
+ & - union, intersection, difference, join

s.at the lift/floor mapping for state s
p.(s.at), s.at[p] the floor of lift p in state s

at = {(s0,p0,10),(s1,p0,f1)} , s = {(s1)}, p = {(p0)}
s.at = {(p0,f1)}, s.at[p] = {(f1);

formulas
in means subset
s.at[p]in f if p is at a floor in state s, that floor is f

example

example

sig Floor {above, below: option Floor}
-- above, below map each floor to at most one floor

example

sig Floor {above, below: option Floor}
-- above, below map each floor to at most one floor

sig Lift {} -- introduces a set, no relations

example

sig Floor {above, below: option Floor}
-- above, below map each floor to at most one floor

sig Lift {} -- introduces a set, no relations

sig State {at, approaching: Lift ->? Floor}
-- at, approaching map each state to a partial function

example

sig Floor {above, below: option Floor}
-- above, below map each floor to at most one floor

sig Lift {} -- introduces a set, no relations

sig State {at, approaching: Lift ->? Floor}
-- at, approaching map each state to a partial function

fact {all s: State, p: Lift | one s.(at+approaching)[p]}
-- global constraint: in a state, lift is at or approaching one floor

example

sig Floor {above, below: option Floor}
-- above, below map each floor to at most one floor

sig Lift {} -- introduces a set, no relations

sig State {at, approaching: Lift ->? Floor}
-- at, approaching map each state to a partial function

fact {all s: State, p: Lift | one s.(at+approaching)(p]};
-- global constraint: in a state, lift is at or approaching one floor

fun show () {Floor in State.at[Lift]}
-- invocable constraint: each floor has a lift at it in some state

example

sig Floor {above, below: option Floor}
-- above, below map each floor to at most one floor

sig Lift {} -- introduces a set, no relations

sig State {at, approaching: Lift ->? Floor}
-- at, approaching map each state to a partial function

fact {all s: State, p: Lift | one s.(at+approaching)(p]};
-- global constraint: in a state, lift is at or approaching one floor

fun show () {Floor in State.at[Lift]}
-- invocable constraint: each floor has a lift at it in some state

run show for 2 -- find instance with 2 states, lifts, floors

translation

translation

sig Floor {above, below: option Floor}

-- allocate boolean variables Floor|[i] , aboveli,j| , below/i,jl

-- interpretation: aboveli,j| is true if jth floor is above ith floor
-- ranges of i, j etc determined by scope: for 2 floors, i,j € 0..1

translation

sig Floor {above, below: option Floor}

-- allocate boolean variables Floor|[i] , aboveli,j| , below/i,jl

-- interpretation: aboveli,j| is true if jth floor is above ith floor
-- ranges of i, j etc determined by scope: for 2 floors, i,j € 0..1

sig Lift {} -- allocate Lift][i]

translation

sig Floor {above, below: option Floor}

-- allocate boolean variables Floor|[i] , aboveli,j| , below/i,jl

-- interpretation: aboveli,j| is true if jth floor is above ith floor
-- ranges of i, j etc determined by scope: for 2 floors, i,j € 0..1

sig Lift {} -- allocate Lift][i|

sig State {at, approaching: Lift ->? Floor}
-- allocate at/i,j,k| , approaching]i,j,k]

translation

sig Floor {above, below: option Floor}

-- allocate boolean variables Floor|[i] , aboveli,j| , below/i,jl

-- interpretation: aboveli,j| is true if jth floor is above ith floor
-- ranges of i, j etc determined by scope: for 2 floors, i,j € 0..1

sig Lift {} -- allocate Lift][i|

sig State {at, approaching: Lift ->? Floor}
-- allocate at/i,j,k| , approaching]i,j,k]

fact {all s: State, p: Lift | one s.(at+approaching)[p]}
fun show () {Floor in State.at[Lift]}

-- create formula Vk. Floor[k]=di,j. at[i,j,k] A State[i] ALift[j]

translation

sig Floor {above, below: option Floor}
-- allocate boolean variables Floor|i] , aboveli,j| , below]i,j]
-- interpretation: aboveli,j| is true if jth floor is above ith floor

-- ranges of i, j etc determined by scope: for 2 floors, i,j € 0..1

sig Lift {} -- allocate Lift][i|

sig State {at, approaching: Lift ->? Floor}
-- allocate at/i,j,k| , approaching]i,j,k]

fact {all s: State, p: Lift | one s.(at+approaching)(p]};
fun show () {Floor in State.at[Lift]}
-- create formula Vk. Floor[k]=di,j. at[i,j,k] A State[i] ALift[j]

run show for 2 -- solve formula

an instance generated by the analyzer

an instance generated by the analyzer

an instance generated by the analyzer

L P pmaﬂh"ﬂ-i.

__,,-*___"___
f’

- [:I ; -----.""'--
ﬁunr:lﬁj bET@ abl:lve

& '.—]
Graph If Customize

' General Ir Type i. Variable .'

f label ellipse _) f project i | same rank
f label ellipse ; '] project same rank

f label ellipse project ate same rank

select projection for type

projection onto Lift

f Graph |

i’ 1.- N -
Graph | Customize | Customize

Qate > (ate State_1 @ate_@

roaching % at at

L
@DDF 3 bel@ abowve _@DIIIF_]. 3 bel@ abowve

projection onto State

1-- N f ‘-- = N
Ir':ramuh | Customize Graph | Customize

L|Ft ?} L|Ft> Lift_1

approaching \at
\)\ I N

chzlr:lﬁ::l bel@ ahove \-@DDFJ 2 bE|@ above

F

<=

State_1

process

process

button: Floor LiftButton,
buttons: set LiftButton

Jutton {floor: FL
m m n d j LiftButton extends Button {lift: Lift}
CO a- 5] Floor n extends But {

UpButton, DownButton extends FloorButton {}

process

user
writes
model |
and
selects RN
command [EEEte

buttons: set Li

d[Floor].first = Bottom

Alloy Analyzer
translates command
to boolean formula

process

user
writes
model |[EEEEEEIE
and
selects RN
command [EEEet

Alloy Analyzer
translates command
to boolean formula AT ol

finds boolean
solution

process

user
model
and
selects
command

Alloy Analyzer
translates command
to boolean formula

¢ maxindep 12

SAT solver
finds boolean
solution

—)

|7 Solution
Bottom
Button
DownButton
Fleor
¥ | FloorButton
I Lift
LiftButton
[ord[Floor]
I Ord|[State]

¥ |7 Button_0
9 lift
¥ | floor
» Flaor_0

falling

UpButton

Alloy Analyzer
translates boolean
solution to relational

process

4 -
» module lifts
opel ord

user o
writes Sty
model
and
selects

command

Alloy Analyzer
translates command
to boolean formula

€ maxindap 12

Lift_0
(falling, p)

Alloy Analyzer
creates custom
visualization

SAT solver
finds boolean
solution

—)

I solution
Bottom
Button

DownButton
Fleor
¥ | FloorButton
I Lift

LiftButton
[ord[Floor]
. Ord[State]
_ State

| State_0

¥ [Button_0
] life
¥ | floor
L Flaor_0
[falling
promises
anding
approaching
State_1
Top
UpButton

Alloy Analyzer
translates boolean
solution to relational

constraints

constraints

lift physics & hardware
» can’t be at and approaching a floor
» can’t jump from floor to floor
» can’t change direction between floors

constraints

lift physics & hardware
> can’t be at and approaching a floor
> can’t jump from floor to floor
> can’t change direction between floors

policy
» can’t skip a request from inside the lift
» buttons reset when requests serviced

constraints

lift physics & hardware
> can’t be at and approaching a floor
> can’t jump from floor to floor
> can’t change direction between floors

policy
> can’t skip a request from inside the lift
> buttons reset when requests serviced

analyses
» generate samples of states, steps, traces
> show policy implies desired properties (eg, no starvation)

static environmental constraints

static environmental constraints

sig Bottom extends Floor {}

static environmental constraints

sig Bottom extends Floor {}

sig State {
part rising, falling: set Lift
at, approaching: Lift ->? Floor

}

static environmental constraints

sig Bottom extends Floor {}

sig State {
part rising, falling: set Lift
at, approaching: Lift ->? Floor

}

fun LiftPosition (s: State) {
all p: Lift {
-- lift is not at and approaching same floor
no s.at[p] & s.approaching(p]
-- can't be approaching the bottom floor when rising
p in s.rising => s.approaching[p] '= Bottom

.

static environmental constraints

sig Bottom extends Floor {}

sig State {
part rising, falling: set Lift
at, approaching: Lift ->? Floor

}
fun LiftPosition (s: State) {

|l - |
all p !_"Ft {

function: an ‘invocable' constraint

-- lift is not at and approaching same floor

no s.at[p] & s.approaching[p]

-- can't be approaching the bottom floor when rising
p in s.rising => s.approaching[p] '= Bottom

.

dynamic environmental constraints

dynamic environmental constraints

fun LiftMotion (s, s': State) {
all p: Lift {
-- if at a floor after, was at or approaching that floor before
s'.at[p] in s.(at + approaching)[p]

.

dynamic environmental constraints

fun LiftMotion (s, s': State) {
all p: Lift {
-- if at a floor after, was at or approaching that floor before
s'.at[p] in s.(at + approaching)[p]

.

s'.at[p] in s.(at + approaching)[p]
all f: Floor | f = s’.at[p] => f = s.at[p] or f = s.approaching|p]

dynamic environmental constraints

S pre, s’ post:
just a convention

fun LiftMotion (s, s': State){
all p: Lift {
-- if at a floor after, was at or approaching that floor before
s'.at[p] in s.(at + approaching)[p]
.}
}

terse relational operators
s'.at[p] in s.(at + approaching)[p]
all f: Floor | f = s’.at[p] => f = s.at[p] or f = s.approaching|p]

policy: defining denial

policy: defining denial

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}

policy: defining denial

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}

fun Towards (s: State, p: Lift, f: Floor) {
-- p is going towards serving floor f
let next = nextFloor(s,p) |
f in s.at[p].Anext + s.approaching[p].*next

}

policy: defining denial

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}

fun Towards (s: State, p: Lift, f: Floor) {
-- p is going towards serving floor f
let next = nextFloor(s,p) |
f in s.at[p].Anext + s.approaching[p].*next

}

fun Denies (s, s': State, p: Lift, b: Button) {
-— p was going to serve b, but is no longer
let f = b.floor |
Towards (s,p,f) and not Towards (s',p,f) and !Serves (s,s',p,b)

}

policy: defining denial

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}

fun Towards (s: State, p: Lift, f: Floor) { transitive closure
-- p is going towards serving floor f
let next = nextFloor(s,p)
fin s.at[pl.Anext + s.approaching[pl.*next

}

fun Denies (s, s': State, p: Lift, b: Button) {
-- p was going to serve b, but is no longer
let f = b.floor |
Towards (s,p,f) and not Towards (s',p,f) and !Serves (s,s',p,b)

}

policy

sig State {
lit: set Button,
promises: Lift -> Button, ...

}

policy

sig State {
lit: set Button,
promises: Lift -> Button, ...

}
fun Policy (s, s': State) {

-- a lift can't deny a promise or a request from inside the lift
no p: Lift, b: s.promises[p] + p.buttons & s.lit | Denies (s,s',p,b)
-- if a lift denies a request some lift serves it or promises to
all b: s.lit & FloorButton - s.promises|[Lift], p: Lift |
Denies (s,s',p,b) =>
(some q: Lift | Serves(s,s',q,b)) or b in s'.promises[Lift]

policy

sig State {
lit: set Button,
promises: Lift -> Button, ...

}
fun Policy (s, s': State) {

-- a lift can't deny a promise or a request from inside the lift
no p: Lift, b: s.promises[p] + p.buttons & s.lit | Denies (s,s',p,b)
-- if a lift denies a request some lift serves it or promises to
all b: s.lit & FloorButton - s.promises|[Lift], p: Lift |
Denies (s,s',p,b) =>
(some q: Lift | Serves(s,s',q,b)) oi(b in s'.promises[Lift]

non-deterministic

putting things together

putting things together

fun Trans (s, s': State) {
-- the before and after positions and the motion are legal
LiftPosition (s) and LiftPosition (s') and LiftMotion (s,s’)
-- the policy is satisfied
Policy (s,s’)
-- the buttons are reset appropriately
some press: set Button | ButtonUpdate (s,s’,press)

}

ahimating denial

ahimating denial

fun ShowPolicy (s, s': State) {
Trans (s, s')
some b: s.lit & FloorButton, p: Lift | Denies (s,s',p,b)
no s.promises & some s’.promises

}
run ShowPolicy for 2 but 3 Floor

sample denial

sample denial

Button _0O Button_1

flaar: Floar_1

sample denial

the denying lift

sample denial

the denying lift
the denied button

Floor_1
up: Button_1(h)

sample denial

Lift_0
(rising)

Button _0

flaar: Floor_0

Button_1

(h)

approaching

|

Floor_Z

Lifr_1

(rising, p)

approaching

Flaaor_1

up: Button_1(h)*

below

|

Floor_0
up: Button _0

flaar: Floar_1

the denying lift

the denied button

promises \ at

4

Button_1

(b

floar: Floor_1

\

Floor_Z
!

|

lbeluw

Floor_1
up: Button_1ih)

below

Y
Floor_o
Up: Buttaon_0

at \prumiSES

1

Button _0
floor: Floor_0

sample denial

the denying lift
- Button_1
Lift_0 Button_0 (b) the denied button

(rising] floar: Floor_D flaor Flaor 1

approaching

|
Floor_Z

Lift_1
(rising, p)

approaching promises |\ at

Flaaor_1 \

up: Button_1(h)* FI 2
oor_

floor: Floor_1 1

below

} |
Floor_ 0 below at \prumiSES
up: Button _0O 1
F||:||:|r_1 Eutton_0
up: Button_1ih) floar: Floar_0

another lift promises below

| |
Floar_0
up: Button_O

traces: checking starvation

traces: checking starvation

fun Trace () {
-— a state is related to its successor by the transition relation
all s: State - Ord[State].last |
let s' = Ord[State].next[s] | Trans (s,s’)

}

traces: checking starvation

fun Trace () {
-— a state is related to its successor by the transition relation
all s: State - Ord[State].last |
let s' = Ord|[State].next[s] | Trans (s,s’)

}

assert EventuallyServed {
-- if the states form a trace
Trace () =>
-- then a button lit in the start state is eventually reset
all b: (Ord[State].first).lit | some s': State | b lin s'.lit
}

traces: checking starvation

fun Trace () {
-— a state is related to its successor by the transition relation
all s: State - Ord[State].last |
let s' = Ord|[State].next[s] | Trans (s,s’)
}

assert EventuallyServed {
-- if the states form a trace
Trace () =>
-- then a button lit in the start state is eventually reset
all b: (Ord[State].first).lit | some s': State | b lin s'.lit
}

check EventuallyServed for 3 Lift, 3 Button, 3 Floor, 8 State

counterexample!

counterexample!

T S
= "y,

~~ Button_2 ™\
l..._‘ floor: Floor_0 '_,J

— iy

helow

counterexample!

- s
— "y,

»~ Button_2 .
l..._‘ floor: Floor_0 '_,J

— —

assert EventuallyServed {
Trace () and some Lift =>
all b: (Ord[State].first).lit | some s': State | b lin s'.lit
}

another...

Lift_0
{rising)

another Lift_1 promises

Lift. 1 Lift_0
(risi 19} (falling)

Lifr_0
(rising)

floor: Floor_0

another...

Lift_0
{rising)

Lift_1 promises

Lift. 1

(risi1g)

floar: Floaor 0

Lift_0
ifalling)

turns

Lift_1
falling)

Lift_0
ifalling)

Button _0O
= (h)

flacr: Floar_0

approaching

)
|
Floar_2
l
\QEIDW at
Floar_1
below
|
Floar_oQ
up: Button_0ch)
DO C PDd C O

Floar_2

approaching | below

|
Floar_1

below
|

promises

Button_0

(k)

flaor: Floar_oQ

Floar_oQ
up: Button_0ch)

promises

Button_0
i)

flaor: Floar_oQ

approaching / at

Floar_2

belaw
Y

Floar_1

belaw
Y

Floar_0

up: Button_0O(h)

Lpramises af

Button_0
[{=))] Floar_2

flacr: Floor_0

approaching below

Floar_1

el o
|

Floar_0
up: Buttan_0O(h)

Button _0O
= (h)

flacr: Floar_0

approaching

)
|
Floar_2
l
\\b\elow at
Floar_1
below
|
Floar_oQ
up: Button_0ch)
DO C PDd C O

Floar_2

approaching | below

|
Floar_1

below
|

promises

Button_0

(k)

flaor: Floar_oQ

Floar_oQ
up: Button_0ch)

promises

Button_0
i)

flaor: Floar_oQ

approaching / at

Floar_2

belaw
Y

Floar_1

belaw
Y

Floar_0

up: Button_0O(h)

Button_0O
k)

flacr: Floar_0

Lift_o
(rising)

approaching

|
Floar_2

l

\\b\elow at

Floar_1

below

|
Floar_oQ
up: Button_0ch)

Lpramises af

Button_0
[{=))] Floar_2

flacr: Floor_0

approaching below

Floar_1

el o
|

Floar_0
up: Buttan_0O(h)

what you've seen

what you've seen

simple logic, complex system
» relations for all structuring
buttons to lifts, components to states, states to successors
» declarative style
separation of concerns by conjunction
» relational operators
succinct, idioms easy to grasp
students did lift problem as homework after 3 lectures

what you've seen

simple logic, complex system
> relations for all structuring
buttons to lifts, components to states, states to successors
> declarative style
separation of concerns by conjunction
> relational operators
succinct, idioms easy to grasp
students did lift problem as homework after 3 lectures

one analysis -- model finding
» for simulation and consequence checking
> (for checking refactoring)

when is 3 trace lonq enough?

when is 3 trace lonq enough?

for safety properties, check all traces
> but how long? ie, what is scope of State?

when is 3 trace lonq enough?

for safety properties, check all traces
> but how long? ie, what is scope of State?

idea: bound the diameter
» if all states reached in path < k
» enough to consider only traces < k

when is 3 trace lonq enough?

for safety properties, check all traces
> but how long? ie, what is scope of State?

idea: bound the diameter
> if all states reached in path <k
> enough to consider only traces < k

strategy
» ask for loopless trace of length k+1
if none, then k is a bound
> tighter bounds possible: eg, no shortcuts

when is 3 trace lonq enough?

for safety properties, check all traces
> but how long? ie, what is scope of State?

idea: bound the diameter
> if all states reached in path <k
> enough to consider only traces < k

strategy
> ask for loopless trace of length k+1
if none, then k is a bound
> tighter bounds possible: eg, no shortcuts

like bounded model checking
» but can express conditions directly

when is 3 trace lonq enough?

for safety properties, check all traces
> but how long? ie, what is scope of State?

idea: bound the diameter
> if all states reached in path <k
> enough to consider only traces < k

strategy
> ask for loopless trace of length k+1
if none, then k is a bound
> tighter bounds possible: eg, no shortcuts

like bounded model checking
> but can express conditions directly

@

diameter = 1
max loopless =1

when is 3 trace lonq enough?

for safety properties, check all traces
> but how long? ie, what is scope of State?

idea: bound the diameter
> if all states reached in path <k
> enough to consider only traces < k

strategy
> ask for loopless trace of length k+1
if none, then k is a bound
> tighter bounds possible: eg, no shortcuts

like bounded model checking
> but can express conditions directly

@

diameter = 1
max loopless =1

diameter = 1
max loopless = 5

applica’cions to code

applica’cions to code

Alloy Annotation Language
» mutation, nulls, dynamic dispatch

applica’cl’ons to code

Alloy Annotation Language
> mutation, nulls, dynamic dispatch

test suite generation
» ask analyzer for instances of rep invariant
> can test one operation of an abstract type
» symmetry breaking gives good coverage

applica’cions to code

Alloy Annotation Language
> mutation, nulls, dynamic dispatch

test suite generation
> ask analyzer for instances of rep invariant
> can test one operation of an abstract type
> symmetry breaking gives good coverage

code analysis
» translate body of method into Alloy constraint
» assert that body implies specification
» analyzer gives counterexamples heap traces

applica’cions to code

Alloy Annotation Language
> mutation, nulls, dynamic dispatch

test suite generation
> ask analyzer for instances of rep invariant
> can test one operation of an abstract type
> symmetry breaking gives good coverage

code analysis
» translate body of method into Alloy constraint
» assert that body implies specification
> analyzer gives counterexamples heap traces

example: red-black trees
all x,y: Leaf | #(x.~*children & Black) = #(y.~*children & Black)

related work: UML

related work: UML

Object Constraint Language (IBM)
» not fully declarative
> pre/post built-in
» Smalltalk-like syntax for quantifiers

related work: UML

Object Constraint Language (IBM)
> not fully declarative
> pre/post built-in
> Smalltalk-like syntax for quantifiers

not designed for analysis
» ‘tool just like Alloy’s, but with Joe User in place of Chaff’

related work: UML

Object Constraint Language (IBM)
> not fully declarative
> pre/post built-in
> Smalltalk-like syntax for quantifiers

not designed for analysis
> ‘tool just like Alloy’s, but with Joe User in place of Chaff’

many researchers working on fixing it
> better to start again with something simpler?
» must we really discard traditional logic?
> is this really what industry needs?

related work: UML

Object Constraint Language (IBM)
> not fully declarative
> pre/post built-in
> Smalltalk-like syntax for quantifiers

not designed for analysis
> ‘tool just like Alloy’s, but with Joe User in place of Chaff’

many researchers working on fixing it
> better to start again with something simpler?
> must we really discard traditional logic?
> is this really what industry needs?

see UML metamodel in Alloy on sdg.lcs.mit.edu/alloy

related work: model checking

related work: model checking

only low-level datatypes
» must encode in records, arrays
» no transitive closure, etc

related work: model checking

only low-level datatypes
> must encode in records, arrays
> no transitive closure, etc

built-in communications
» not suited for abstract schemes
» fixed topology of processes

related work: model checking

only low-level datatypes
> must encode in records, arrays
> no transitive closure, etc

built-in communications
» not suited for abstract schemes

> fixed topology of processes

culture of model checking
» emphasizes finding showstopper flaws
» but in software, essence is incremental modelling
» keep counters, discard model or vice versa?

related work: model checking

only low-level datatypes
> must encode in records, arrays
> no transitive closure, etc

built-in communications
» not suited for abstract schemes

> fixed topology of processes

culture of model checking
> emphasizes finding showstopper flaws
> but in software, essence is incremental modelling
> keep counters, discard model or vice versa?

related work: static analysis

related work: static analysis

type analyses
» scalable, compositional, economical
» can’t express complex structural properties

related work: static analysis

type analyses
> scalable, compositional, economical
» can’t express complex structural properties

proof-based techniques (eg, PCC)
» complete: good when adversary seeds bugs (but ESC)
» can’t check structural properties without lemmas

related work: static analysis

type analyses
> scalable, compositional, economical
» can’t express complex structural properties

proof-based techniques (eg, PCC)
> complete: good when adversary seeds bugs (but ESC)
» can’t check structural properties without lemmas

shape analyses (eg, PEGs, TVLA)
» automatic and complete for whole program
> but for modular analysis, not complete
eg, assume arguments to procedure aren’t aliased

conclusion

conclusion

summary

» executability # loss of abstraction
» analysis is more than verification

» first-order logic can be tractable

conclusion

summary
» executability # loss of abstraction
> analysis is more than verification
> first-order logic can be tractable

current challenges
» documenting idioms
» tool performance

from 30 bits (1995) to 1000 bits (2002)
» design conformance

conclusion

summary
» executability # loss of abstraction
> analysis is more than verification
> first-order logic can be tractable

current challenges
> documenting idioms
> tool performance

from 30 bits (1995) to 1000 bits (2002)
> design conformance

http://sdg.lcs.mit.edu/alloy
» tool downloads
> papers

